In the last lesson, we wrote some code that plots some values of interest from our first inflammation dataset, and reveals some suspicious features in it, such as from inflammation-01.csv
However, we have a dozen data sets right now, though, and more on the way. We want to create plots for all of our data sets with a single statement. To do that, we’ll have to teach the computer how to repeat things.
An example task that we might want to repeat is printing each character in a word on a line of its own. One way to do this would be to use a series of print statements:
In [ ]:
from __future__ import division, print_function
word = 'lead'
print(word[0])
print(word[1])
print(word[2])
print(word[3])
This is a bad approach for two reasons:
It doesn’t scale: if we want to print the characters in a string that’s hundreds of letters long, we’d be better off just typing them in.
It’s fragile: if we give it a longer string, it only prints part of the data, and if we give it a shorter one, it produces an error because we’re asking for characters that don’t exist.
word = 'tin' print(word[0]) print(word[1]) print(word[2]) print(word[3])
Here's a better approach
In [ ]:
word = 'oxygen'
for char in word:
print(char)
The improved version uses a for loop to repeat an operation—in this case, printing—once for each thing in a collection. The general form of a loop is:
for variable in collection:
do things with variable
or
for page in book:
read(page)
`
We can call the loop variable anything we like, but there must be a colon at the end of the line starting the loop, and we must indent anything we want to run inside the loop. Unlike many other languages, there is no command to end a loop (e.g. end for); what is indented after the for statement belongs to the loop.
We can use for loops to count things by increasing variables:
In [ ]:
length = 0
for vowel in 'aeiou':
length = length + 1
print('There are', length, 'vowels')
It’s worth tracing the execution of this little program step by step. Since there are five characters in 'aeiou'
, the statement on line 3 will be executed five times. The first time around, length
is zero (the value assigned to it on line 1) and vowel
is 'a'
. The statement adds 1 to the old value of length
, producing 1, and updates length
to refer to that new value. The next time around, vowel
is 'e'
and length
is 1, so length is updated to be 2. After three more updates, length
is 5; since there is nothing left in 'aeiou'
for Python to process, the loop finishes and the print
statement on line 4 tells us our final answer.
Note that a loop variable is just a variable that’s being used to record progress in a loop. It still exists after the loop is over, and we can re-use variables previously defined as loop variables as well:
In [ ]:
letter = 'z'
for letter in 'abc':
print(letter)
print('after the loop, letter is', letter)
Note also that finding the length of a string is such a common operation that Python actually has a built-in function to do it called len
:
In [ ]:
print(len('aeiou'))
len
is much faster than any function we could write ourselves, and much easier to read than a two-line loop; it will also give us the length of many other things that we haven’t met yet, so we should always use it when we can.