In [2]:
%matplotlib inline

In [1]:
import numpy as np
import pandas as pd

# 統計用ツール
import statsmodels.api as sm
import statsmodels.tsa.api as tsa
from patsy import dmatrices

# 自作の空間統計用ツール
from spatialstat import *

#描画
import matplotlib.pyplot as plt
from pandas.tools.plotting import autocorrelation_plot
import seaborn as sns
sns.set(font=['IPAmincho'])

import pyper


/Users/NIGG/anaconda/lib/python3.5/site-packages/matplotlib/__init__.py:1035: UserWarning: Duplicate key in file "/Users/NIGG/.matplotlib/matplotlibrc", line #515
  (fname, cnt))
/Users/NIGG/anaconda/lib/python3.5/site-packages/matplotlib/__init__.py:1035: UserWarning: Duplicate key in file "/Users/NIGG/.matplotlib/matplotlibrc", line #516
  (fname, cnt))

In [3]:
data = pd.read_csv("TokyoSingle.csv")

In [1]:
data.head


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-051a76ec4ac4> in <module>()
----> 1 data.head

NameError: name 'data' is not defined

In [5]:
data[-6:-1]


Out[5]:
CENSUS P S L R RW CY A TS TT ... SOUTH RSD CMD IDD FAR FLR TDQ X Y CITY_CODE
77495 13123043004 2780 82.60 57.44 3 4.0 200106 169 15 23 ... 0 0 0 0 60 200 201503 35.72261 139.88423 13123
77496 13123053002 3480 111.56 76.69 4 4.0 201504 3 17 18 ... 0 1 0 0 60 150 201503 35.71659 139.87892 13123
77497 13123021002 3490 86.76 88.59 4 7.5 201505 2 23 32 ... 1 1 0 0 60 150 201503 35.69842 139.87823 13123
77498 13123051002 3600 77.00 78.53 3 8.1 201412 7 18 23 ... 0 1 0 0 60 100 201503 35.72606 139.87268 13123
77499 13123055001 3999 99.77 74.94 4 6.0 201503 4 10 35 ... 0 0 0 0 60 300 201503 35.69921 139.89479 13123

5 rows × 22 columns


In [6]:
data.shape


Out[6]:
(77501, 22)

In [7]:
data = data.dropna()

In [8]:
CITY_NAME = data['CITY_CODE'].copy()

In [9]:
CITY_NAME[CITY_NAME == 13101] = '01千代田区'
CITY_NAME[CITY_NAME == 13102] = "02中央区"
CITY_NAME[CITY_NAME == 13103] = "03港区"
CITY_NAME[CITY_NAME == 13104] = "04新宿区"
CITY_NAME[CITY_NAME == 13105] = "05文京区"
CITY_NAME[CITY_NAME == 13106] = "06台東区"
CITY_NAME[CITY_NAME == 13107] = "07墨田区"
CITY_NAME[CITY_NAME == 13108] = "08江東区"
CITY_NAME[CITY_NAME == 13109] = "09品川区"
CITY_NAME[CITY_NAME == 13110] = "10目黒区"
CITY_NAME[CITY_NAME == 13111] = "11大田区"
CITY_NAME[CITY_NAME == 13112] = "12世田谷区"
CITY_NAME[CITY_NAME == 13113] = "13渋谷区"
CITY_NAME[CITY_NAME == 13114] = "14中野区"
CITY_NAME[CITY_NAME == 13115] = "15杉並区"
CITY_NAME[CITY_NAME == 13116] = "16豊島区"
CITY_NAME[CITY_NAME == 13117] = "17北区"
CITY_NAME[CITY_NAME == 13118] = "18荒川区"
CITY_NAME[CITY_NAME == 13119] = "19板橋区"
CITY_NAME[CITY_NAME == 13120] = "20練馬区"
CITY_NAME[CITY_NAME == 13121] = "21足立区"
CITY_NAME[CITY_NAME == 13122] = "22葛飾区"
CITY_NAME[CITY_NAME == 13123] = "23江戸川区"

In [10]:
#Make Japanese Block name
BLOCK = data["CITY_CODE"].copy()
BLOCK[BLOCK == 13101] = "01都心・城南"
BLOCK[BLOCK == 13102] = "01都心・城南"
BLOCK[BLOCK == 13103] = "01都心・城南"
BLOCK[BLOCK == 13104] = "01都心・城南"
BLOCK[BLOCK == 13109] = "01都心・城南"
BLOCK[BLOCK == 13110] = "01都心・城南"
BLOCK[BLOCK == 13111] = "01都心・城南"
BLOCK[BLOCK == 13112] = "01都心・城南"
BLOCK[BLOCK == 13113] = "01都心・城南"
BLOCK[BLOCK == 13114] = "02城西・城北"
BLOCK[BLOCK == 13115] = "02城西・城北"
BLOCK[BLOCK == 13105] = "02城西・城北"
BLOCK[BLOCK == 13106] = "02城西・城北"
BLOCK[BLOCK == 13116] = "02城西・城北"
BLOCK[BLOCK == 13117] = "02城西・城北"
BLOCK[BLOCK == 13119] = "02城西・城北"
BLOCK[BLOCK == 13120] = "02城西・城北"
BLOCK[BLOCK == 13107] = "03城東"
BLOCK[BLOCK == 13108] = "03城東"
BLOCK[BLOCK == 13118] = "03城東"
BLOCK[BLOCK == 13121] = "03城東"
BLOCK[BLOCK == 13122] = "03城東"
BLOCK[BLOCK == 13123] = "03城東"

In [11]:
names = list(data.columns) + ['CITY_NAME', 'BLOCK']
data = pd.concat((data, CITY_NAME, BLOCK), axis = 1)
data.columns = names

変数名とデータの内容メモ

CENSUS: 市区町村コード(9桁)
P:      成約価格
S:      専有面積
L:      土地面積
R:      部屋数
RW:     前面道路幅員
CY:     建築年
A:      建築後年数(成約時)
TS:     最寄駅までの距離
TT:     東京駅までの時間
ACC:    ターミナル駅までの時間
WOOD:   木造ダミー
SOUTH:  南向きダミー
RSD:    住居系地域ダミー
CMD:    商業系地域ダミー
IDD:    工業系地域ダミー
FAR:    建ぺい率
FLR:    容積率
TDQ:    成約時点(四半期)
X:      緯度
Y:      経度
CITY_CODE: 市区町村コード(5桁)
CITY_NAME: 市区町村名
BLOCK:     地域ブロック名

03SummaryStat

Summary stat and correlation


In [12]:
s_data = data[['P', 'S', 'L', 'R', 'A', 'RW', 'TS', 'TT']]

In [13]:
s_data.describe()


Out[13]:
P S L R A RW TS TT
count 77388.000000 77388.000000 77388.000000 77388.000000 77388.000000 77388.000000 77388.000000 77388.000000
mean 5745.409689 101.496476 86.631660 3.488978 50.046067 4.898872 10.339898 30.807698
std 3056.826263 35.732280 40.390705 0.918125 92.814379 1.997453 4.865877 7.738183
min 850.000000 31.190000 19.610000 0.000000 0.000000 2.000000 0.000000 1.000000
25% 3980.000000 84.250000 60.780000 3.000000 1.000000 4.000000 7.000000 26.000000
50% 4980.000000 94.600000 79.430000 3.000000 4.000000 4.000000 10.000000 31.000000
75% 6380.000000 106.510000 100.200000 4.000000 46.000000 5.500000 13.000000 37.000000
max 30000.000000 497.810000 495.860000 47.000000 412.000000 35.000000 69.000000 154.000000

In [14]:
print(data['TDQ'].value_counts())


201104    2108
201502    1923
200504    1900
200604    1816
200602    1755
201204    1713
200404    1645
200704    1564
200501    1564
200502    1542
200601    1542
201501    1519
200503    1499
201404    1495
200702    1477
200701    1476
200603    1469
200703    1438
200902    1437
200802    1417
200403    1382
201304    1374
200804    1373
201202    1289
200104    1272
200803    1271
200204    1260
200903    1242
201201    1237
201203    1235
          ... 
201004    1161
200402    1158
200304    1105
201403    1066
201303    1056
201102    1055
201402    1038
200904    1033
200004    1021
200103     991
200202     989
200101     989
201002     981
200201     979
200102     977
201301     975
201101     974
201401     962
201003     958
201103     954
200401     926
201001     920
200302     901
200203     841
200301     839
200001     834
200002     800
200003     739
200303     689
201503     583
Name: TDQ, dtype: int64

市区町村別の件数を集計


In [15]:
print(data['CITY_NAME'].value_counts())


12世田谷区    12340
20練馬区      9979
15杉並区      8131
11大田区      7052
21足立区      6479
19板橋区      4827
14中野区      3924
10目黒区      3418
22葛飾区      3165
23江戸川区     3156
09品川区      2424
16豊島区      2153
04新宿区      1885
17北区       1799
13渋谷区      1487
05文京区      1242
18荒川区      1005
08江東区       981
03港区        757
07墨田区       725
06台東区       371
02中央区        56
01千代田区       32
Name: CITY_NAME, dtype: int64

成約時点別×市区町村別の件数を集計


In [16]:
print(data.pivot_table(index=['TDQ'], columns=['CITY_NAME']))


                 CENSUS                                            \
CITY_NAME        01千代田区         02中央区          03港区         04新宿区   
TDQ                                                                 
200001     1.310105e+10           NaN  1.310302e+10  1.310406e+10   
200002              NaN           NaN  1.310302e+10  1.310405e+10   
200003     1.310100e+10           NaN  1.310302e+10  1.310405e+10   
200004              NaN           NaN  1.310302e+10  1.310405e+10   
200101              NaN  1.310202e+10  1.310302e+10  1.310405e+10   
200102              NaN  1.310202e+10  1.310302e+10  1.310406e+10   
200103     1.310105e+10           NaN  1.310302e+10  1.310406e+10   
200104              NaN           NaN  1.310302e+10  1.310405e+10   
200201              NaN           NaN  1.310302e+10  1.310406e+10   
200202     1.310105e+10  1.310204e+10  1.310302e+10  1.310405e+10   
200203     1.310105e+10           NaN  1.310302e+10  1.310406e+10   
200204     1.310105e+10  1.310203e+10  1.310302e+10  1.310406e+10   
200301     1.310105e+10  1.310201e+10  1.310302e+10  1.310405e+10   
200302     1.310101e+10  1.310204e+10  1.310302e+10  1.310406e+10   
200303     1.310104e+10  1.310201e+10  1.310301e+10  1.310406e+10   
200304              NaN  1.310202e+10  1.310302e+10  1.310405e+10   
200401              NaN  1.310202e+10  1.310302e+10  1.310405e+10   
200402     1.310104e+10  1.310201e+10  1.310302e+10  1.310406e+10   
200403     1.310104e+10  1.310202e+10  1.310302e+10  1.310405e+10   
200404              NaN  1.310202e+10  1.310302e+10  1.310406e+10   
200501              NaN  1.310201e+10  1.310302e+10  1.310406e+10   
200502              NaN           NaN  1.310302e+10  1.310406e+10   
200503              NaN  1.310203e+10  1.310302e+10  1.310406e+10   
200504              NaN  1.310203e+10  1.310301e+10  1.310406e+10   
200601              NaN           NaN  1.310302e+10  1.310406e+10   
200602              NaN           NaN  1.310302e+10  1.310405e+10   
200603              NaN  1.310201e+10  1.310302e+10  1.310406e+10   
200604              NaN  1.310204e+10  1.310302e+10  1.310406e+10   
200701              NaN           NaN  1.310302e+10  1.310405e+10   
200702              NaN  1.310201e+10  1.310302e+10  1.310406e+10   
...                 ...           ...           ...           ...   
200802              NaN  1.310203e+10  1.310302e+10  1.310406e+10   
200803              NaN  1.310203e+10  1.310302e+10  1.310405e+10   
200804              NaN           NaN  1.310302e+10  1.310407e+10   
200901              NaN           NaN  1.310302e+10  1.310405e+10   
200902              NaN           NaN  1.310300e+10  1.310406e+10   
200903              NaN           NaN  1.310301e+10  1.310405e+10   
200904              NaN  1.310204e+10  1.310302e+10  1.310406e+10   
201001              NaN           NaN  1.310302e+10  1.310406e+10   
201002              NaN  1.310201e+10  1.310302e+10  1.310405e+10   
201003              NaN           NaN  1.310302e+10  1.310405e+10   
201004              NaN  1.310201e+10  1.310302e+10  1.310405e+10   
201101              NaN           NaN  1.310302e+10  1.310405e+10   
201102              NaN  1.310201e+10  1.310302e+10  1.310406e+10   
201103              NaN  1.310202e+10  1.310302e+10  1.310406e+10   
201104              NaN           NaN  1.310301e+10  1.310406e+10   
201201     1.310100e+10           NaN  1.310302e+10  1.310405e+10   
201202     1.310105e+10  1.310202e+10  1.310301e+10  1.310406e+10   
201203              NaN           NaN  1.310302e+10  1.310406e+10   
201204              NaN  1.310202e+10  1.310302e+10  1.310405e+10   
201301              NaN  1.310202e+10  1.310301e+10  1.310406e+10   
201302     1.310104e+10  1.310201e+10  1.310302e+10  1.310406e+10   
201303              NaN           NaN  1.310301e+10  1.310406e+10   
201304     1.310105e+10           NaN  1.310302e+10  1.310405e+10   
201401              NaN  1.310201e+10  1.310302e+10  1.310405e+10   
201402     1.310105e+10           NaN  1.310302e+10  1.310406e+10   
201403              NaN           NaN  1.310302e+10  1.310405e+10   
201404              NaN  1.310201e+10  1.310302e+10  1.310406e+10   
201501     1.310102e+10           NaN  1.310302e+10  1.310406e+10   
201502     1.310100e+10  1.310201e+10  1.310302e+10  1.310405e+10   
201503              NaN           NaN           NaN  1.310405e+10   

                                                                   \
CITY_NAME         05文京区         06台東区         07墨田区         08江東区   
TDQ                                                                 
200001     1.310501e+10  1.310602e+10  1.310703e+10  1.310803e+10   
200002     1.310501e+10  1.310603e+10  1.310702e+10  1.310802e+10   
200003     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
200004     1.310501e+10  1.310602e+10  1.310701e+10  1.310801e+10   
200101     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200102     1.310501e+10  1.310603e+10  1.310701e+10  1.310802e+10   
200103     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200104     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200201     1.310501e+10  1.310602e+10           NaN  1.310802e+10   
200202     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
200203     1.310501e+10  1.310603e+10  1.310702e+10  1.310802e+10   
200204     1.310501e+10  1.310602e+10  1.310702e+10  1.310801e+10   
200301     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
200302     1.310501e+10  1.310601e+10  1.310702e+10  1.310803e+10   
200303     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
200304     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200401     1.310501e+10  1.310602e+10  1.310702e+10  1.310801e+10   
200402     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
200403     1.310501e+10  1.310602e+10  1.310702e+10  1.310801e+10   
200404     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200501     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200502     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200503     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
200504     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
200601     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
200602     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
200603     1.310501e+10  1.310601e+10  1.310701e+10  1.310802e+10   
200604     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
200701     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
200702     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
...                 ...           ...           ...           ...   
200802     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200803     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200804     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200901     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200902     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
200903     1.310501e+10  1.310601e+10  1.310701e+10  1.310801e+10   
200904     1.310501e+10  1.310601e+10  1.310701e+10  1.310802e+10   
201001     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
201002     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
201003     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
201004     1.310501e+10  1.310601e+10  1.310701e+10  1.310802e+10   
201101     1.310501e+10  1.310601e+10  1.310701e+10  1.310801e+10   
201102     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
201103     1.310501e+10  1.310602e+10  1.310701e+10  1.310801e+10   
201104     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
201201     1.310501e+10  1.310603e+10  1.310702e+10  1.310802e+10   
201202     1.310501e+10  1.310603e+10  1.310702e+10  1.310802e+10   
201203     1.310501e+10  1.310601e+10  1.310702e+10  1.310802e+10   
201204     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
201301     1.310501e+10  1.310602e+10  1.310702e+10  1.310801e+10   
201302     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
201303     1.310501e+10           NaN  1.310701e+10  1.310803e+10   
201304     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
201401     1.310501e+10  1.310601e+10  1.310701e+10  1.310802e+10   
201402     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
201403     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
201404     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   
201501     1.310501e+10  1.310601e+10  1.310701e+10  1.310802e+10   
201502     1.310501e+10  1.310602e+10  1.310701e+10  1.310802e+10   
201503     1.310501e+10  1.310602e+10  1.310702e+10  1.310802e+10   

                                       ...   CITY_CODE                       \
CITY_NAME         09品川区         10目黒区  ...       14中野区  15杉並区  16豊島区   17北区   
TDQ                                    ...                                    
200001     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200002     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200003     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200004     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200101     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200102     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200103     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200104     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200201     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200202     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200203     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200204     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200301     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200302     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200303     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200304     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200401     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200402     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200403     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200404     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200501     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200502     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200503     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200504     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200601     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200602     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200603     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200604     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200701     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200702     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
...                 ...           ...  ...         ...    ...    ...    ...   
200802     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200803     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200804     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200901     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200902     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
200903     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
200904     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201001     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201002     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201003     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201004     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201101     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201102     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
201103     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201104     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201201     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
201202     1.310902e+10  1.311001e+10  ...       13114  13115  13116  13117   
201203     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
201204     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201301     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
201302     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201303     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201304     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201401     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201402     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
201403     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201404     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201501     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   
201502     1.310901e+10  1.311001e+10  ...       13114  13115  13116  13117   
201503     1.310901e+10  1.311002e+10  ...       13114  13115  13116  13117   

                                                     
CITY_NAME  18荒川区  19板橋区  20練馬区  21足立区  22葛飾区 23江戸川区  
TDQ                                                  
200001     13118  13119  13120  13121  13122  13123  
200002     13118  13119  13120  13121  13122  13123  
200003     13118  13119  13120  13121  13122  13123  
200004     13118  13119  13120  13121  13122  13123  
200101     13118  13119  13120  13121  13122  13123  
200102     13118  13119  13120  13121  13122  13123  
200103     13118  13119  13120  13121  13122  13123  
200104     13118  13119  13120  13121  13122  13123  
200201     13118  13119  13120  13121  13122  13123  
200202     13118  13119  13120  13121  13122  13123  
200203     13118  13119  13120  13121  13122  13123  
200204     13118  13119  13120  13121  13122  13123  
200301     13118  13119  13120  13121  13122  13123  
200302     13118  13119  13120  13121  13122  13123  
200303     13118  13119  13120  13121  13122  13123  
200304     13118  13119  13120  13121  13122  13123  
200401     13118  13119  13120  13121  13122  13123  
200402     13118  13119  13120  13121  13122  13123  
200403     13118  13119  13120  13121  13122  13123  
200404     13118  13119  13120  13121  13122  13123  
200501     13118  13119  13120  13121  13122  13123  
200502     13118  13119  13120  13121  13122  13123  
200503     13118  13119  13120  13121  13122  13123  
200504     13118  13119  13120  13121  13122  13123  
200601     13118  13119  13120  13121  13122  13123  
200602     13118  13119  13120  13121  13122  13123  
200603     13118  13119  13120  13121  13122  13123  
200604     13118  13119  13120  13121  13122  13123  
200701     13118  13119  13120  13121  13122  13123  
200702     13118  13119  13120  13121  13122  13123  
...          ...    ...    ...    ...    ...    ...  
200802     13118  13119  13120  13121  13122  13123  
200803     13118  13119  13120  13121  13122  13123  
200804     13118  13119  13120  13121  13122  13123  
200901     13118  13119  13120  13121  13122  13123  
200902     13118  13119  13120  13121  13122  13123  
200903     13118  13119  13120  13121  13122  13123  
200904     13118  13119  13120  13121  13122  13123  
201001     13118  13119  13120  13121  13122  13123  
201002     13118  13119  13120  13121  13122  13123  
201003     13118  13119  13120  13121  13122  13123  
201004     13118  13119  13120  13121  13122  13123  
201101     13118  13119  13120  13121  13122  13123  
201102     13118  13119  13120  13121  13122  13123  
201103     13118  13119  13120  13121  13122  13123  
201104     13118  13119  13120  13121  13122  13123  
201201     13118  13119  13120  13121  13122  13123  
201202     13118  13119  13120  13121  13122  13123  
201203     13118  13119  13120  13121  13122  13123  
201204     13118  13119  13120  13121  13122  13123  
201301     13118  13119  13120  13121  13122  13123  
201302     13118  13119  13120  13121  13122  13123  
201303     13118  13119  13120  13121  13122  13123  
201304     13118  13119  13120  13121  13122  13123  
201401     13118  13119  13120  13121  13122  13123  
201402     13118  13119  13120  13121  13122  13123  
201403     13118  13119  13120  13121  13122  13123  
201404     13118  13119  13120  13121  13122  13123  
201501     13118  13119  13120  13121  13122  13123  
201502     13118  13119  13120  13121  13122  13123  
201503     13118  13119  13120  13121  13122  13123  

[63 rows x 483 columns]

成約時点別×地域ブロック別の件数を集計


In [17]:
print(data.pivot_table(index=['TDQ'], columns=['BLOCK']))


              CENSUS                                        P               \
BLOCK        01都心・城南       02城西・城北          03城東      01都心・城南      02城西・城北   
TDQ                                                                          
200001  1.311033e+10  1.311581e+10  1.312004e+10  7399.858911  5872.318681   
200002  1.311049e+10  1.311637e+10  1.312009e+10  7276.618938  5932.909408   
200003  1.311055e+10  1.311578e+10  1.312082e+10  7139.290816  6176.982456   
200004  1.311079e+10  1.311620e+10  1.312014e+10  7459.767967  5993.241259   
200101  1.311038e+10  1.311591e+10  1.312024e+10  7151.689342  5833.323113   
200102  1.311053e+10  1.311655e+10  1.312063e+10  7554.334135  5519.058796   
200103  1.311082e+10  1.311643e+10  1.312039e+10  7442.875670  5529.286207   
200104  1.311045e+10  1.311618e+10  1.312042e+10  7318.639191  5471.789796   
200201  1.311046e+10  1.311595e+10  1.312069e+10  6842.570213  5469.279188   
200202  1.311071e+10  1.311551e+10  1.312051e+10  6772.594912  5562.571148   
200203  1.311062e+10  1.311589e+10  1.312000e+10  7093.306619  5543.623567   
200204  1.311072e+10  1.311578e+10  1.312049e+10  6833.169727  5685.290974   
200301  1.311070e+10  1.311610e+10  1.311914e+10  7396.902975  5280.512821   
200302  1.311064e+10  1.311602e+10  1.312039e+10  6759.205567  5374.607407   
200303  1.311055e+10  1.311641e+10  1.312097e+10  6939.937391  5201.690043   
200304  1.311050e+10  1.311633e+10  1.312075e+10  7262.770251  5324.960497   
200401  1.311041e+10  1.311636e+10  1.312045e+10  7109.541119  5213.655108   
200402  1.311070e+10  1.311678e+10  1.312044e+10  6923.363345  4987.354267   
200403  1.311062e+10  1.311613e+10  1.311985e+10  7000.491568  5309.601212   
200404  1.311049e+10  1.311601e+10  1.312027e+10  7055.453600  5343.703800   
200501  1.311051e+10  1.311653e+10  1.312005e+10  6886.984151  5202.612126   
200502  1.311050e+10  1.311640e+10  1.311954e+10  7150.359728  5340.393874   
200503  1.311057e+10  1.311634e+10  1.311947e+10  7335.625516  5260.281683   
200504  1.311087e+10  1.311613e+10  1.311917e+10  7835.427525  5541.041437   
200601  1.311073e+10  1.311617e+10  1.311982e+10  7789.539701  5444.865127   
200602  1.311080e+10  1.311664e+10  1.311997e+10  7957.132747  5545.012022   
200603  1.311097e+10  1.311652e+10  1.311953e+10  7899.027634  5567.982686   
200604  1.311078e+10  1.311699e+10  1.311884e+10  8585.407240  5598.507763   
200701  1.311059e+10  1.311669e+10  1.311971e+10  8362.876740  5851.591239   
200702  1.311068e+10  1.311665e+10  1.311951e+10  8699.175887  5747.957524   
...              ...           ...           ...          ...          ...   
200802  1.311091e+10  1.311697e+10  1.311943e+10  8726.384946  5435.136049   
200803  1.311086e+10  1.311677e+10  1.311970e+10  8592.913420  5404.359375   
200804  1.311073e+10  1.311694e+10  1.311946e+10  7785.852273  5267.044248   
200901  1.311073e+10  1.311695e+10  1.311998e+10  6568.142184  5044.784749   
200902  1.311071e+10  1.311678e+10  1.311962e+10  6429.386024  5014.242623   
200903  1.311071e+10  1.311666e+10  1.311935e+10  7150.550905  5034.155670   
200904  1.311046e+10  1.311688e+10  1.312054e+10  6908.893939  5004.963519   
201001  1.311058e+10  1.311705e+10  1.312052e+10  7765.467148  5057.545642   
201002  1.311044e+10  1.311726e+10  1.312051e+10  7537.208481  5019.010515   
201003  1.311045e+10  1.311690e+10  1.311983e+10  7137.339175  4993.959406   
201004  1.311005e+10  1.311683e+10  1.312017e+10  6675.804154  5145.535135   
201101  1.311025e+10  1.311732e+10  1.311987e+10  6976.826165  4984.240534   
201102  1.311049e+10  1.311718e+10  1.311974e+10  6933.179211  5033.169742   
201103  1.311055e+10  1.311719e+10  1.312004e+10  6966.469582  4903.657282   
201104  1.311048e+10  1.311718e+10  1.311971e+10  6328.623408  5035.399886   
201201  1.311027e+10  1.311768e+10  1.312025e+10  6222.344512  4637.095986   
201202  1.311026e+10  1.311673e+10  1.312021e+10  6071.030585  4955.065480   
201203  1.311021e+10  1.311705e+10  1.311968e+10  6715.687831  4769.312000   
201204  1.311053e+10  1.311693e+10  1.312015e+10  6569.068468  4916.640488   
201301  1.311031e+10  1.311692e+10  1.311989e+10  6626.559322  4701.993534   
201302  1.311033e+10  1.311699e+10  1.311966e+10  6388.288571  4971.381910   
201303  1.311061e+10  1.311732e+10  1.311940e+10  6300.783489  4989.930285   
201304  1.311040e+10  1.311717e+10  1.312022e+10  7163.943128  4859.165391   
201401  1.311048e+10  1.311691e+10  1.311948e+10  6822.179104  4911.749465   
201402  1.311025e+10  1.311740e+10  1.311980e+10  7153.518272  5087.525253   
201403  1.311036e+10  1.311722e+10  1.312020e+10  6556.274667  5068.709552   
201404  1.311037e+10  1.311713e+10  1.312025e+10  6852.042691  5078.867982   
201501  1.311047e+10  1.311652e+10  1.312094e+10  6994.015232  5306.357456   
201502  1.311042e+10  1.311782e+10  1.312087e+10  6859.167411  5057.464821   
201503  1.311087e+10  1.311715e+10  1.312066e+10  6568.333333  5211.302752   

                              S                                 L  \
BLOCK          03城東     01都心・城南     02城西・城北       03城東    01都心・城南   
TDQ                                                                 
200001  4342.893939  109.886510  101.313049  95.806061  96.094109   
200002  4263.587500  110.943626   98.588850  96.373875  90.328984   
200003  3885.451613  110.268878  104.887825  89.108871  90.320893   
200004  3877.380952  109.713285  102.114779  91.677238  93.488316   
200101  4000.080645  111.666531   99.680849  93.551452  91.848413   
200102  3998.627907  115.039038   97.776389  92.194496  95.097476   
200103  3938.796296  115.121094   98.338046  90.566944  99.352522   
200104  3807.068345  114.098927   98.800694  90.891799  94.741104   
200201  3946.328696  108.481426   99.895203  94.344870  90.678340   
200202  3850.991736  108.577593  100.753221  94.817438  89.865068   
200203  3902.548077  112.454374  102.413408  96.396442  94.828676   
200204  3765.760563  110.505681  104.168551  95.223239  91.662525   
200301  3711.511628  117.275584  101.960842  94.006589  98.038215   
200302  3563.806849  107.987505  102.074481  93.208356  93.900165   
200303  3632.924779  111.113014   99.758961  91.883363  93.382203   
200304  3527.335676  114.895753  100.466547  92.002486  94.593853   
200401  3741.924476  113.213650  101.440565  90.395385  98.272628   
200402  3669.998561  107.927527   97.883939  92.669281  90.107189   
200403  3699.347656  110.898564   98.960162  94.314531  90.994585   
200404  3892.790576  110.278777   96.764214  94.518796  90.713611   
200501  3623.847390  107.042693   96.776877  94.167229  84.594306   
200502  3620.228175  110.890762   98.323964  92.478373  89.931878   
200503  3832.634884  110.107581   96.561386  95.084791  89.122522   
200504  3743.683516  115.244205   98.122275  92.941209  93.506717   
200601  3810.079182  113.246860   98.441923  93.572268  91.155432   
200602  3944.528873  112.933518   97.822036  97.791444  92.177226   
200603  3852.379779  109.085596   97.203689  92.237794  89.620466   
200604  4066.222022  115.380060   96.780582  95.986534  93.240332   
200701  4036.992537  110.395201   98.892175  95.334216  88.085110   
200702  4051.605455  112.706578   94.409969  93.955855  88.693422   
...             ...         ...         ...        ...        ...   
200802  4073.076950  114.779032   96.855806  97.110887  91.047993   
200803  4048.696226  112.015736   94.480533  93.900679  87.243550   
200804  3934.287037  110.003760   94.639416  95.405093  86.697438   
200901  3748.933929  101.480968   93.525290  94.656036  80.677122   
200902  3767.257053  101.103012   94.692705  95.880721  78.172402   
200903  3732.136508  109.276244   96.970144  92.538476  88.493688   
200904  3676.596667  103.466465   95.532146  92.793815  87.305488   
201001  3586.077295  112.258520   98.282982  93.171353  94.694585   
201002  3629.482072  113.664452   95.185772  94.813386  95.894028   
201003  3635.551331  111.118522   94.095520  93.342433  92.458213   
201004  3633.464052  103.400504   96.477819  95.044216  83.251840   
201101  3519.669611  108.764409   96.603932  91.858763  85.954839   
201102  3770.754839  109.740143   96.366953  94.011323  87.358889   
201103  3632.810036  106.479772   94.378908  94.004373  85.781141   
201104  3536.671381  100.830573   94.504107  94.249318  80.012006   
201201  3434.345238  100.832774   92.668482  96.376756  79.550030   
201202  3334.376068  101.839947   95.896014  94.123789  81.162340   
201203  3379.436170  107.701429   96.543652  96.905142  86.283095   
201204  3403.239645  106.357730   95.730671  95.343077  87.074595   
201301  3452.037037  109.063356   94.608405  97.298287  84.765627   
201302  3483.681004  107.559171   97.460754  96.070538  85.030571   
201303  3462.378601  101.901651   96.244309  95.532099  84.027352   
201304  3494.872910  108.257393   94.492481  93.579197  88.679526   
201401  3580.691630  108.491866   93.916895  94.515154  88.164813   
201402  3532.954545  109.673688   96.399455  93.780083  90.575781   
201403  3572.537549  107.543733   95.648207  96.449328  86.863100   
201404  3484.062469  107.780070   95.239241  97.161235  83.963225   
201501  3442.073982  107.368146   99.350724  96.764376  87.974371   
201502  3552.597533  105.017433   95.557935  95.747089  82.450647   
201503  3499.192857  106.680578   95.268624  94.126857  88.039600   

            ...              FLR          X                                 Y  \
BLOCK       ...             03城東    01都心・城南    02城西・城北       03城東     01都心・城南   
TDQ         ...                                                                 
200001      ...       234.393939  35.630043  35.722496  35.733464  139.680251   
200002      ...       212.500000  35.629669  35.724128  35.729507  139.676333   
200003      ...       202.096774  35.629520  35.725294  35.725902  139.678867   
200004      ...       199.238095  35.633891  35.721874  35.740678  139.671286   
200101      ...       206.322581  35.635773  35.723339  35.738500  139.675384   
200102      ...       206.666667  35.632474  35.727582  35.734954  139.676147   
200103      ...       209.351852  35.628844  35.726785  35.733586  139.672155   
200104      ...       207.266187  35.632836  35.725522  35.735263  139.677330   
200201      ...       211.573913  35.628624  35.722669  35.742449  139.681407   
200202      ...       211.157025  35.629130  35.721566  35.745758  139.675710   
200203      ...       214.423077  35.628354  35.725421  35.744459  139.675646   
200204      ...       205.408451  35.625121  35.721058  35.747268  139.672471   
200301      ...       200.186047  35.626068  35.722233  35.739261  139.672514   
200302      ...       211.986301  35.623800  35.726029  35.750007  139.675078   
200303      ...       213.734513  35.629136  35.731217  35.741070  139.675683   
200304      ...       224.108108  35.625096  35.727924  35.747115  139.678946   
200401      ...       212.657343  35.625870  35.726181  35.740994  139.681423   
200402      ...       216.776978  35.626256  35.731345  35.745774  139.675894   
200403      ...       219.765625  35.627503  35.725403  35.738646  139.675597   
200404      ...       218.324607  35.627143  35.725046  35.732742  139.680131   
200501      ...       218.955823  35.628011  35.730142  35.741997  139.680485   
200502      ...       222.753968  35.626627  35.728124  35.739197  139.677334   
200503      ...       232.497674  35.630453  35.729936  35.738252  139.677789   
200504      ...       218.263736  35.629625  35.726231  35.736446  139.671230   
200601      ...       222.267658  35.630608  35.728927  35.738099  139.676025   
200602      ...       216.158451  35.629633  35.730181  35.739113  139.671838   
200603      ...       212.205882  35.626906  35.729815  35.739319  139.670670   
200604      ...       223.552347  35.625756  35.731999  35.737863  139.675983   
200701      ...       211.977612  35.628254  35.733513  35.734373  139.678770   
200702      ...       220.872727  35.630020  35.733647  35.739891  139.675765   
...         ...              ...        ...        ...        ...         ...   
200802      ...       214.680851  35.627703  35.738356  35.747284  139.673660   
200803      ...       206.709434  35.633291  35.732597  35.739248  139.673331   
200804      ...       208.641975  35.634198  35.733916  35.740282  139.669751   
200901      ...       210.089286  35.630074  35.734541  35.745442  139.672215   
200902      ...       217.269592  35.627954  35.735144  35.746884  139.676090   
200903      ...       213.304762  35.629330  35.732546  35.744821  139.676358   
200904      ...       212.374074  35.633071  35.734704  35.749027  139.674321   
201001      ...       212.309179  35.630347  35.737451  35.755518  139.675238   
201002      ...       223.537849  35.627164  35.737017  35.755349  139.679731   
201003      ...       205.102662  35.632317  35.738675  35.756564  139.673538   
201004      ...       212.787582  35.634778  35.735675  35.759718  139.677998   
201101      ...       209.621908  35.629108  35.739901  35.757462  139.678536   
201102      ...       216.174194  35.631420  35.738100  35.754371  139.673153   
201103      ...       210.774194  35.629988  35.740201  35.758988  139.671948   
201104      ...       207.051581  35.624915  35.733924  35.761114  139.678299   
201201      ...       206.375000  35.624753  35.742329  35.753440  139.682148   
201202      ...       212.062678  35.622668  35.733227  35.760703  139.681607   
201203      ...       213.882979  35.621498  35.737343  35.755607  139.687295   
201204      ...       212.707101  35.620917  35.736367  35.752881  139.682315   
201301      ...       215.537037  35.627383  35.736899  35.745723  139.682754   
201302      ...       212.301075  35.621128  35.737420  35.747653  139.682540   
201303      ...       213.703704  35.627200  35.734930  35.742879  139.679392   
201304      ...       213.347826  35.626072  35.737011  35.746977  139.679402   
201401      ...       212.687225  35.622717  35.735975  35.742254  139.682915   
201402      ...       213.698347  35.622825  35.735145  35.746510  139.682949   
201403      ...       203.857708  35.631445  35.735341  35.750486  139.674674   
201404      ...       206.195062  35.625509  35.736719  35.754400  139.677781   
201501      ...       198.308804  35.622149  35.736509  35.769413  139.683071   
201502      ...       197.643092  35.619530  35.740447  35.763233  139.683499   
201503      ...       199.257143  35.602161  35.735219  35.759738  139.689096   

                                   CITY_CODE                              
BLOCK      02城西・城北        03城東       01都心・城南       02城西・城北          03城東  
TDQ                                                                       
200001  139.649451  139.834092  13110.299505  13115.793956  13120.015152  
200002  139.644771  139.842428  13110.459584  13116.351916  13120.050000  
200003  139.648323  139.845460  13110.525510  13115.761404  13120.790323  
200004  139.643573  139.838385  13110.761807  13116.184149  13120.104762  
200101  139.652287  139.835395  13110.351474  13115.891509  13120.201613  
200102  139.649514  139.837392  13110.495192  13116.530093  13120.596899  
200103  139.647426  139.841819  13110.792411  13116.406897  13120.361111  
200104  139.651751  139.842005  13110.418351  13116.157143  13120.388489  
200201  139.646920  139.833643  13110.431915  13115.928934  13120.660870  
200202  139.651515  139.829698  13110.686888  13115.495798  13120.479339  
200203  139.650306  139.831712  13110.595745  13115.869427  13119.961538  
200204  139.649557  139.829357  13110.694405  13115.764846  13120.457746  
200301  139.646554  139.832306  13110.670481  13116.084249  13119.108527  
200302  139.647117  139.824471  13110.618557  13116.000000  13120.356164  
200303  139.649193  139.834882  13110.518841  13116.389610  13120.929204  
200304  139.647735  139.829131  13110.474910  13116.306630  13120.713514  
200401  139.645021  139.836905  13110.379562  13116.338710  13120.419580  
200402  139.643990  139.833927  13110.674377  13116.763676  13120.410072  
200403  139.644290  139.836949  13110.595520  13116.107071  13119.820312  
200404  139.649179  139.839443  13110.466286  13115.986183  13120.240838  
200501  139.648260  139.833198  13110.479663  13116.508306  13120.016064  
200502  139.647200  139.834959  13110.468027  13116.381982  13119.511905  
200503  139.649991  139.831001  13110.536873  13116.318482  13119.441860  
200504  139.648032  139.838210  13110.838384  13116.106587  13119.142857  
200601  139.654241  139.836145  13110.697674  13116.146051  13119.791822  
200602  139.647578  139.839687  13110.775372  13116.621585  13119.936620  
200603  139.648569  139.833187  13110.946459  13116.501618  13119.496324  
200604  139.645956  139.832390  13110.752640  13116.970320  13118.812274  
200701  139.652187  139.841142  13110.556777  13116.672205  13119.679104  
200702  139.651173  139.832926  13110.648936  13116.631661  13119.483636  
...            ...         ...           ...           ...           ...  
200802  139.656294  139.826465  13110.883513  13116.946274  13119.400709  
200803  139.651862  139.837203  13110.831169  13116.751838  13119.671698  
200804  139.651720  139.835030  13110.702479  13116.923894  13119.419753  
200901  139.657372  139.828553  13110.704715  13116.928571  13119.946429  
200902  139.659791  139.827122  13110.683071  13116.757377  13119.586207  
200903  139.657754  139.829289  13110.680995  13116.641237  13119.317460  
200904  139.654332  139.830089  13110.427609  13116.860515  13120.503704  
201001  139.653327  139.820225  13110.555957  13117.029817  13120.483092  
201002  139.650750  139.826256  13110.409894  13117.243848  13120.474104  
201003  139.656494  139.822836  13110.419244  13116.883663  13119.787072  
201004  139.655110  139.817664  13110.020772  13116.812741  13120.137255  
201101  139.649089  139.823822  13110.225806  13117.298544  13119.833922  
201102  139.652478  139.821606  13110.462366  13117.154506  13119.706452  
201103  139.657300  139.818537  13110.517110  13117.169903  13120.003584  
201104  139.648339  139.811954  13110.453822  13117.161547  13119.658902  
201201  139.650280  139.819006  13110.250000  13117.659686  13120.205357  
201202  139.655550  139.817293  13110.234043  13116.713523  13120.168091  
201203  139.654861  139.819908  13110.179894  13117.031304  13119.645390  
201204  139.657071  139.822542  13110.497297  13116.914634  13120.109467  
201301  139.657950  139.823817  13110.281356  13116.900862  13119.851852  
201302  139.651693  139.827017  13110.302857  13116.974874  13119.627240  
201303  139.651808  139.829478  13110.582555  13117.300813  13119.374486  
201304  139.650595  139.831361  13110.367299  13117.145482  13120.190635  
201401  139.653129  139.829940  13110.455224  13116.886510  13119.449339  
201402  139.645310  139.826844  13110.222591  13117.379798  13119.768595  
201403  139.649722  139.828153  13110.333333  13117.196881  13120.158103  
201404  139.649729  139.819608  13110.343387  13117.106222  13120.209877  
201501  139.659141  139.810189  13110.443709  13116.502193  13120.888305  
201502  139.641752  139.823394  13110.388393  13117.797001  13120.827303  
201503  139.656263  139.825987  13110.840000  13117.133028  13120.621429  

[63 rows x 63 columns]

04Histogram

価格(真数)


In [18]:
data['P'].hist()


Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x117034828>

価格(自然対数)


In [19]:
(np.log(data['P'])).hist()


Out[19]:
<matplotlib.axes._subplots.AxesSubplot at 0x117034f60>

建築後年数


In [20]:
data['A'].hist()


Out[20]:
<matplotlib.axes._subplots.AxesSubplot at 0x108cb4198>

In [21]:
plt.figure(figsize=(20,8))

plt.subplot(4, 2, 1)
data['P'].hist()
plt.title(u"成約価格")

plt.subplot(4, 2, 2)
data['S'].hist()
plt.title("専有面積")

plt.subplot(4, 2, 3)
data['L'].hist()
plt.title("土地面積")

plt.subplot(4, 2, 4)
data['R'].hist()
plt.title("部屋数")

plt.subplot(4, 2, 5)
data['A'].hist()
plt.title("建築後年数")

plt.subplot(4, 2, 6)
data['RW'].hist()
plt.title("前面道路幅員")

plt.subplot(4, 2, 7)
data['TS'].hist()
plt.title("最寄駅までの距離")

plt.subplot(4, 2, 8)
data['TT'].hist()
plt.title(u"東京駅までの時間")


Out[21]:
<matplotlib.text.Text at 0x11a7ca7b8>

05Plot

件数の推移


In [22]:
plt.figure(figsize=(20,8))
data['TDQ'].value_counts().plot(kind='bar')


Out[22]:
<matplotlib.axes._subplots.AxesSubplot at 0x1171cd898>

In [23]:
plt.figure(figsize=(20,8))
data['CITY_NAME'].value_counts().plot(kind='bar') #市区町村別の件数


Out[23]:
<matplotlib.axes._subplots.AxesSubplot at 0x11ee65cc0>

MultipleRegression

Regression

Model1


In [24]:
def fml_build(varlst):
    """
    Binding OLS formula from a list of variable names
    varlst: variable names, the 1st var should be endogeneouse variable
    """
    varlst.reverse()
    fml=varlst.pop()+'~'
    while len(varlst) != 0:
        fml=fml+'+'+varlst.pop()
    return fml

In [25]:
vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR', 'FLR']
eq = fml_build(vars)

y, X = dmatrices(eq, data=data, return_type='dataframe')

logy = np.log(y)

model1 = sm.OLS(logy, X, intercept=True)
reg1 = model1.fit()
print(reg1.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      P   R-squared:                       0.602
Model:                            OLS   Adj. R-squared:                  0.602
Method:                 Least Squares   F-statistic:                     8996.
Date:                Sat, 03 Dec 2016   Prob (F-statistic):               0.00
Time:                        11:56:03   Log-Likelihood:                -5306.9
No. Observations:               77388   AIC:                         1.064e+04
Df Residuals:                   77374   BIC:                         1.077e+04
Df Model:                          13                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      8.7594      0.013    669.274      0.000         8.734     8.785
S              0.0056   4.27e-05    131.678      0.000         0.006     0.006
L              0.0028   3.79e-05     72.864      0.000         0.003     0.003
R             -0.0236      0.001    -20.327      0.000        -0.026    -0.021
RW            -0.0033      0.000     -6.800      0.000        -0.004    -0.002
A             -0.0009   1.08e-05    -84.310      0.000        -0.001    -0.001
TS            -0.0183      0.000    -91.348      0.000        -0.019    -0.018
TT            -0.0076      0.000    -54.058      0.000        -0.008    -0.007
WOOD          -0.1230      0.004    -35.086      0.000        -0.130    -0.116
SOUTH          0.0018      0.002      0.793      0.428        -0.003     0.006
CMD            0.0184      0.005      3.423      0.001         0.008     0.029
IDD           -0.1846      0.003    -57.255      0.000        -0.191    -0.178
FAR           -0.0032      0.000    -16.477      0.000        -0.004    -0.003
FLR           -0.0007   2.08e-05    -33.350      0.000        -0.001    -0.001
==============================================================================
Omnibus:                     3131.597   Durbin-Watson:                   1.033
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             8525.057
Skew:                          -0.178   Prob(JB):                         0.00
Kurtosis:                       4.587   Cond. No.                     3.52e+03
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.52e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Model2


In [26]:
vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR']
eq = fml_build(vars)

y, X = dmatrices(eq, data=data, return_type='dataframe')

CITY_NAME = pd.get_dummies(data['CITY_NAME'])
TDQ = pd.get_dummies(data['TDQ'])

X = pd.concat((X, CITY_NAME, TDQ), axis=1)

logy = np.log(y)

model2 = sm.OLS(logy, X, intercept=True)
reg2 = model2.fit()
print(reg2.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      P   R-squared:                       0.826
Model:                            OLS   Adj. R-squared:                  0.826
Method:                 Least Squares   F-statistic:                     3834.
Date:                Sat, 03 Dec 2016   Prob (F-statistic):               0.00
Time:                        11:56:05   Log-Likelihood:                 26824.
No. Observations:               77388   AIC:                        -5.345e+04
Df Residuals:                   77291   BIC:                        -5.256e+04
Df Model:                          96                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      7.8672      0.009    880.317      0.000         7.850     7.885
S              0.0040    2.9e-05    137.870      0.000         0.004     0.004
L              0.0034   2.53e-05    135.016      0.000         0.003     0.003
R              0.0060      0.001      7.565      0.000         0.004     0.008
RW             0.0068      0.000     21.114      0.000         0.006     0.007
A             -0.0010   7.15e-06   -136.776      0.000        -0.001    -0.001
TS            -0.0107      0.000    -75.508      0.000        -0.011    -0.010
TT            -0.0065      0.000    -52.256      0.000        -0.007    -0.006
WOOD          -0.0565      0.002    -23.918      0.000        -0.061    -0.052
SOUTH          0.0184      0.002     11.942      0.000         0.015     0.021
CMD           -0.0145      0.004     -3.954      0.000        -0.022    -0.007
IDD           -0.0593      0.002    -25.721      0.000        -0.064    -0.055
FAR           -0.0018      0.000    -14.907      0.000        -0.002    -0.002
01千代田区         0.7349      0.029     25.202      0.000         0.678     0.792
02中央区          0.4068      0.022     18.403      0.000         0.364     0.450
03港区           0.8244      0.006    131.005      0.000         0.812     0.837
04新宿区          0.4376      0.004    103.745      0.000         0.429     0.446
05文京区          0.4841      0.005     96.169      0.000         0.474     0.494
06台東区          0.2134      0.009     24.025      0.000         0.196     0.231
07墨田区          0.1179      0.007     17.857      0.000         0.105     0.131
08江東区          0.1998      0.006     35.141      0.000         0.189     0.211
09品川区          0.4080      0.004    106.416      0.000         0.400     0.415
10目黒区          0.6447      0.003    186.897      0.000         0.638     0.651
11大田区          0.3387      0.003    125.218      0.000         0.333     0.344
12世田谷区         0.5562      0.003    204.934      0.000         0.551     0.562
13渋谷区          0.6848      0.005    146.939      0.000         0.676     0.694
14中野区          0.3682      0.003    109.599      0.000         0.362     0.375
15杉並区          0.4321      0.003    152.077      0.000         0.427     0.438
16豊島区          0.3273      0.004     81.568      0.000         0.319     0.335
17北区           0.1264      0.004     29.483      0.000         0.118     0.135
18荒川区          0.1037      0.006     17.745      0.000         0.092     0.115
19板橋区          0.1888      0.003     55.957      0.000         0.182     0.195
20練馬区          0.2770      0.003     86.821      0.000         0.271     0.283
21足立区         -0.0776      0.003    -26.304      0.000        -0.083    -0.072
22葛飾区         -0.0241      0.004     -6.814      0.000        -0.031    -0.017
23江戸川区         0.0942      0.004     26.155      0.000         0.087     0.101
200001         0.1396      0.006     23.697      0.000         0.128     0.151
200002         0.1554      0.006     25.861      0.000         0.144     0.167
200003         0.1273      0.006     20.367      0.000         0.115     0.140
200004         0.1421      0.005     26.658      0.000         0.132     0.153
200101         0.1341      0.005     24.787      0.000         0.123     0.145
200102         0.1322      0.005     24.321      0.000         0.122     0.143
200103         0.1162      0.005     21.525      0.000         0.106     0.127
200104         0.0931      0.005     19.471      0.000         0.084     0.102
200201         0.0828      0.005     15.241      0.000         0.072     0.093
200202         0.0765      0.005     14.149      0.000         0.066     0.087
200203         0.0769      0.006     13.141      0.000         0.065     0.088
200204         0.0715      0.005     14.875      0.000         0.062     0.081
200301         0.0612      0.006     10.438      0.000         0.050     0.073
200302         0.0605      0.006     10.695      0.000         0.049     0.072
200303         0.0566      0.006      8.757      0.000         0.044     0.069
200304         0.0616      0.005     12.035      0.000         0.052     0.072
200401         0.0570      0.006     10.222      0.000         0.046     0.068
200402         0.0660      0.005     13.196      0.000         0.056     0.076
200403         0.0681      0.005     14.838      0.000         0.059     0.077
200404         0.0853      0.004     20.260      0.000         0.077     0.094
200501         0.0901      0.004     20.897      0.000         0.082     0.099
200502         0.0907      0.004     20.882      0.000         0.082     0.099
200503         0.1135      0.004     25.784      0.000         0.105     0.122
200504         0.1346      0.004     34.310      0.000         0.127     0.142
200601         0.1369      0.004     31.529      0.000         0.128     0.145
200602         0.1704      0.004     41.786      0.000         0.162     0.178
200603         0.1842      0.004     41.431      0.000         0.175     0.193
200604         0.2096      0.004     52.289      0.000         0.202     0.217
200701         0.2242      0.004     50.550      0.000         0.215     0.233
200702         0.2519      0.004     56.825      0.000         0.243     0.261
200703         0.2680      0.004     59.648      0.000         0.259     0.277
200704         0.2680      0.004     62.147      0.000         0.260     0.276
200801         0.2391      0.005     49.357      0.000         0.230     0.249
200802         0.2244      0.005     49.566      0.000         0.215     0.233
200803         0.2214      0.005     46.401      0.000         0.212     0.231
200804         0.1732      0.005     37.663      0.000         0.164     0.182
200901         0.1302      0.005     26.510      0.000         0.121     0.140
200902         0.1229      0.004     27.330      0.000         0.114     0.132
200903         0.1183      0.005     24.500      0.000         0.109     0.128
200904         0.1323      0.005     25.021      0.000         0.122     0.143
201001         0.1266      0.006     22.617      0.000         0.116     0.138
201002         0.1344      0.005     24.771      0.000         0.124     0.145
201003         0.1331      0.005     24.248      0.000         0.122     0.144
201004         0.1330      0.005     26.630      0.000         0.123     0.143
201101         0.1142      0.005     20.962      0.000         0.104     0.125
201102         0.1296      0.005     24.746      0.000         0.119     0.140
201103         0.1287      0.006     23.378      0.000         0.118     0.139
201104         0.1030      0.004     27.525      0.000         0.096     0.110
201201         0.0879      0.005     18.128      0.000         0.078     0.097
201202         0.0780      0.005     16.430      0.000         0.069     0.087
201203         0.0732      0.005     15.114      0.000         0.064     0.083
201204         0.0829      0.004     20.073      0.000         0.075     0.091
201301         0.0677      0.005     12.436      0.000         0.057     0.078
201302         0.0774      0.005     15.919      0.000         0.068     0.087
201303         0.0806      0.005     15.403      0.000         0.070     0.091
201304         0.1000      0.005     21.740      0.000         0.091     0.109
201401         0.0980      0.005     17.895      0.000         0.087     0.109
201402         0.1173      0.005     22.223      0.000         0.107     0.128
201403         0.1131      0.005     21.708      0.000         0.103     0.123
201404         0.1175      0.004     26.611      0.000         0.109     0.126
201501         0.1139      0.004     25.736      0.000         0.105     0.123
201502         0.1359      0.004     34.703      0.000         0.128     0.144
201503         0.1530      0.007     21.788      0.000         0.139     0.167
==============================================================================
Omnibus:                     7061.422   Durbin-Watson:                   1.585
Prob(Omnibus):                  0.000   Jarque-Bera (JB):            32917.594
Skew:                          -0.338   Prob(JB):                         0.00
Kurtosis:                       6.123   Cond. No.                     5.28e+17
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 7.88e-27. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

F value


In [27]:
reg1.fvalue


Out[27]:
8996.2042653827066

In [28]:
reg2.fvalue


Out[28]:
3833.9161361682782

AIC


In [29]:
reg1.aic


Out[29]:
10641.747737480211

In [30]:
reg2.aic


Out[30]:
-53454.990898209217

F test


In [31]:
reg1_n = len(reg1.params)
reg2_n = len(reg2.params)

In [32]:
reg1.f_test(np.identity(reg1_n))


Out[32]:
<class 'statsmodels.stats.contrast.ContrastResults'>
<F test: F=array([[ 6040199.7470554]]), p=0.0, df_denom=77374, df_num=14>

In [33]:
reg2.f_test(np.identity(reg2_n))


Out[33]:
<class 'statsmodels.stats.contrast.ContrastResults'>
<F test: F=array([[ 3015155.96012016]]), p=0.0, df_denom=77291, df_num=99>

White-Test

Heterogeneity

WLS

Plot

建築後年数


In [34]:
plt.figure(figsize=(20,10))
plt.plot(data['A'], reg2.resid, 'o')


Out[34]:
[<matplotlib.lines.Line2D at 0x103202860>]

In [35]:
plt.figure(figsize=(20,10))
plt.plot(data['L'], reg2.resid, 'o')


Out[35]:
[<matplotlib.lines.Line2D at 0x117132a90>]

In [36]:
plt.figure(figsize=(20,10))
plt.plot(data['S'], reg2.resid, 'o')


Out[36]:
[<matplotlib.lines.Line2D at 0x11af61ef0>]

WLS


In [37]:
vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR']
eq = fml_build(vars)

y, X = dmatrices(eq, data=data, return_type='dataframe')

CITY_NAME = pd.get_dummies(data['CITY_NAME'])
TDQ = pd.get_dummies(data['TDQ'])

X = pd.concat((X, CITY_NAME, TDQ), axis=1)

logy = np.log(y)

S = data['S'].values

model3 = sm.GLS(logy, X, intercept=True, sigma=1/S)
reg3 = model3.fit()
print(reg3.summary())


                            GLS Regression Results                            
==============================================================================
Dep. Variable:                      P   R-squared:                       0.988
Model:                            GLS   Adj. R-squared:                  0.988
Method:                 Least Squares   F-statistic:                 6.403e+04
Date:                Sat, 03 Dec 2016   Prob (F-statistic):               0.00
Time:                        11:56:10   Log-Likelihood:                 18660.
No. Observations:               77388   AIC:                        -3.713e+04
Df Residuals:                   77291   BIC:                        -3.623e+04
Df Model:                          96                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      8.0334      0.010    844.794      0.000         8.015     8.052
S              0.0030   2.38e-05    128.203      0.000         0.003     0.003
L              0.0034   2.27e-05    149.349      0.000         0.003     0.003
R              0.0050      0.001      6.791      0.000         0.004     0.006
RW             0.0082      0.000     23.962      0.000         0.007     0.009
A             -0.0009   7.95e-06   -112.258      0.000        -0.001    -0.001
TS            -0.0112      0.000    -72.922      0.000        -0.012    -0.011
TT            -0.0071      0.000    -52.635      0.000        -0.007    -0.007
WOOD          -0.0750      0.002    -32.034      0.000        -0.080    -0.070
SOUTH          0.0191      0.002     11.419      0.000         0.016     0.022
CMD           -0.0170      0.004     -4.308      0.000        -0.025    -0.009
IDD           -0.0665      0.003    -25.761      0.000        -0.072    -0.061
FAR           -0.0022      0.000    -17.258      0.000        -0.002    -0.002
01千代田区         0.8176      0.026     31.774      0.000         0.767     0.868
02中央区          0.4520      0.022     20.614      0.000         0.409     0.495
03港区           0.8656      0.006    142.826      0.000         0.854     0.877
04新宿区          0.4400      0.004     99.285      0.000         0.431     0.449
05文京区          0.4982      0.005     95.393      0.000         0.488     0.508
06台東区          0.2023      0.009     21.423      0.000         0.184     0.221
07墨田区          0.1157      0.007     16.025      0.000         0.102     0.130
08江東区          0.1909      0.006     30.181      0.000         0.179     0.203
09品川区          0.4160      0.004    102.189      0.000         0.408     0.424
10目黒区          0.6676      0.003    194.987      0.000         0.661     0.674
11大田区          0.3394      0.003    121.166      0.000         0.334     0.345
12世田谷区         0.5681      0.003    205.996      0.000         0.563     0.574
13渋谷区          0.7338      0.005    155.275      0.000         0.725     0.743
14中野区          0.3621      0.004    100.973      0.000         0.355     0.369
15杉並区          0.4238      0.003    142.679      0.000         0.418     0.430
16豊島区          0.3238      0.004     74.464      0.000         0.315     0.332
17北区           0.1116      0.005     23.513      0.000         0.102     0.121
18荒川区          0.0990      0.006     15.307      0.000         0.086     0.112
19板橋区          0.1811      0.004     50.155      0.000         0.174     0.188
20練馬区          0.2684      0.003     79.280      0.000         0.262     0.275
21足立区         -0.0903      0.003    -28.808      0.000        -0.096    -0.084
22葛飾区         -0.0354      0.004     -9.180      0.000        -0.043    -0.028
23江戸川区         0.0823      0.004     21.134      0.000         0.075     0.090
200001         0.1355      0.006     21.507      0.000         0.123     0.148
200002         0.1534      0.006     23.859      0.000         0.141     0.166
200003         0.1152      0.007     17.323      0.000         0.102     0.128
200004         0.1333      0.006     23.335      0.000         0.122     0.145
200101         0.1348      0.006     23.203      0.000         0.123     0.146
200102         0.1260      0.006     21.595      0.000         0.115     0.137
200103         0.1093      0.006     18.933      0.000         0.098     0.121
200104         0.0897      0.005     17.582      0.000         0.080     0.100
200201         0.0810      0.006     13.818      0.000         0.069     0.092
200202         0.0744      0.006     12.806      0.000         0.063     0.086
200203         0.0774      0.006     12.449      0.000         0.065     0.090
200204         0.0648      0.005     12.704      0.000         0.055     0.075
200301         0.0509      0.006      8.257      0.000         0.039     0.063
200302         0.0536      0.006      8.795      0.000         0.042     0.066
200303         0.0567      0.007      8.175      0.000         0.043     0.070
200304         0.0485      0.005      8.913      0.000         0.038     0.059
200401         0.0549      0.006      9.192      0.000         0.043     0.067
200402         0.0629      0.005     11.597      0.000         0.052     0.074
200403         0.0606      0.005     12.352      0.000         0.051     0.070
200404         0.0852      0.005     18.783      0.000         0.076     0.094
200501         0.0926      0.005     19.675      0.000         0.083     0.102
200502         0.0823      0.005     17.563      0.000         0.073     0.091
200503         0.1139      0.005     23.885      0.000         0.105     0.123
200504         0.1386      0.004     32.926      0.000         0.130     0.147
200601         0.1403      0.005     29.966      0.000         0.131     0.150
200602         0.1817      0.004     41.461      0.000         0.173     0.190
200603         0.1967      0.005     40.556      0.000         0.187     0.206
200604         0.2233      0.004     51.658      0.000         0.215     0.232
200701         0.2334      0.005     48.598      0.000         0.224     0.243
200702         0.2668      0.005     55.264      0.000         0.257     0.276
200703         0.2878      0.005     59.729      0.000         0.278     0.297
200704         0.2861      0.005     61.491      0.000         0.277     0.295
200801         0.2454      0.005     46.256      0.000         0.235     0.256
200802         0.2385      0.005     48.996      0.000         0.229     0.248
200803         0.2304      0.005     44.204      0.000         0.220     0.241
200804         0.1792      0.005     35.594      0.000         0.169     0.189
200901         0.1328      0.005     24.225      0.000         0.122     0.144
200902         0.1255      0.005     25.109      0.000         0.116     0.135
200903         0.1192      0.005     22.545      0.000         0.109     0.130
200904         0.1326      0.006     22.539      0.000         0.121     0.144
201001         0.1344      0.006     22.039      0.000         0.122     0.146
201002         0.1403      0.006     23.644      0.000         0.129     0.152
201003         0.1367      0.006     22.601      0.000         0.125     0.149
201004         0.1352      0.006     24.456      0.000         0.124     0.146
201101         0.1196      0.006     19.905      0.000         0.108     0.131
201102         0.1316      0.006     22.829      0.000         0.120     0.143
201103         0.1354      0.006     22.174      0.000         0.123     0.147
201104         0.1071      0.004     25.644      0.000         0.099     0.115
201201         0.0922      0.005     16.981      0.000         0.082     0.103
201202         0.0795      0.005     15.060      0.000         0.069     0.090
201203         0.0767      0.005     14.438      0.000         0.066     0.087
201204         0.0878      0.005     19.306      0.000         0.079     0.097
201301         0.0746      0.006     12.469      0.000         0.063     0.086
201302         0.0774      0.005     14.517      0.000         0.067     0.088
201303         0.0836      0.006     14.405      0.000         0.072     0.095
201304         0.1047      0.005     20.615      0.000         0.095     0.115
201401         0.1068      0.006     17.617      0.000         0.095     0.119
201402         0.1270      0.006     21.911      0.000         0.116     0.138
201403         0.1216      0.006     21.207      0.000         0.110     0.133
201404         0.1249      0.005     25.725      0.000         0.115     0.134
201501         0.1189      0.005     24.474      0.000         0.109     0.128
201502         0.1424      0.004     32.805      0.000         0.134     0.151
201503         0.1597      0.008     20.674      0.000         0.145     0.175
==============================================================================
Omnibus:                    12394.370   Durbin-Watson:                   1.572
Prob(Omnibus):                  0.000   Jarque-Bera (JB):           167928.025
Skew:                          -0.341   Prob(JB):                         0.00
Kurtosis:                      10.184   Cond. No.                     1.07e+18
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 2.52e-25. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

Robust cluster standard error: using TOWER_ID as a cluster variable [vce(cluster TOWER_ID) in Stata]

rcse <- robust.se(reg2, dataIID)

print(rcse)

Hedonic

RPPI: Time dummy hedonic


In [38]:
data01 = data[data['BLOCK'] == "01都心・城南"]
data02 = data[data['BLOCK'] == "02城西・城北"]
data03 = data[data['BLOCK'] == "03城東"]

In [39]:
# R のインスタンスを作る
r = pyper.R(use_pandas='True')

In [40]:
r.assign("data01", data01)
r("index_mean_01 <- tapply(data01$P, data01$TDQ, mean)")
r.assign("data02", data02)
r("index_mean_02 <- tapply(data02$P, data02$TDQ, mean)")
r.assign("data03", data03)
r("index_mean_03 <- tapply(data03$P, data03$TDQ, mean)")


Out[40]:
'try({index_mean_03 <- tapply(data03$P, data03$TDQ, mean)})\n'

2000Q1 = 1として指数化


In [41]:
r("index_mean_01 <- index_mean_01 / index_mean_01[1]")
r("index_mean_02 <- index_mean_02 / index_mean_02[1]")
r("index_mean_03 <- index_mean_03 / index_mean_03[1]")

r("index_mean    <- cbind(index_mean_01, index_mean_02, index_mean_03)")
r("index_mean_ts <- ts(index_mean, start = 2000, end = 2015.5, freq = 4)")


Out[41]:
'try({index_mean_ts <- ts(index_mean, start = 2000, end = 2015.5, freq = 4)})\n'

In [42]:
index_mean = r.get("index_mean")

In [44]:
plt.figure(figsize=(20,12))
plt.plot(index_mean)
plt.xticks(np.arange(0, len(index_mean), 1), np.arange(0, 15.5, 0.1))
plt.show()


01都心・城南=blue, 02城西・城北=red, 03城東=green

White standard error [vce(robust) option in Stata]


In [45]:
white = reg2.HC0_se
print(white)


Intercept    0.010599
S            0.000059
L            0.000044
R            0.001211
RW           0.000371
A            0.000010
TS           0.000147
TT           0.000130
WOOD         0.002972
SOUTH        0.001580
CMD          0.003723
IDD          0.002111
FAR          0.000136
01千代田区       0.051589
02中央区        0.037495
03港区         0.010650
04新宿区        0.004786
05文京区        0.005755
06台東区        0.011093
07墨田区        0.006732
08江東区        0.006118
09品川区        0.004674
10目黒区        0.004754
11大田区        0.003643
12世田谷区       0.003646
13渋谷区        0.007320
14中野区        0.003694
15杉並区        0.003561
16豊島区        0.004166
17北区         0.004736
               ...   
200802       0.004594
200803       0.004705
200804       0.004612
200901       0.004282
200902       0.004106
200903       0.005091
200904       0.005225
201001       0.005817
201002       0.005262
201003       0.005192
201004       0.004327
201101       0.005413
201102       0.005180
201103       0.005118
201104       0.003393
201201       0.004584
201202       0.004319
201203       0.004926
201204       0.003976
201301       0.005181
201302       0.004585
201303       0.004980
201304       0.004558
201401       0.005172
201402       0.005400
201403       0.004877
201404       0.004302
201501       0.004178
201502       0.003764
201503       0.006940
dtype: float64

Hedonic


In [46]:
vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR']
eq = fml_build(vars)

y, X = dmatrices(eq, data=data01, return_type='dataframe')

CITY_NAME = pd.get_dummies(data01['CITY_NAME'])
TDQ = pd.get_dummies(data01['TDQ'])

X = pd.concat((X, CITY_NAME, TDQ), axis=1)

logy = np.log(y)

hed01_model = sm.OLS(logy, X, intercept=True)
hed01 = hed01_model.fit()
print(hed01.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      P   R-squared:                       0.779
Model:                            OLS   Adj. R-squared:                  0.778
Method:                 Least Squares   F-statistic:                     1263.
Date:                Sat, 03 Dec 2016   Prob (F-statistic):               0.00
Time:                        11:56:59   Log-Likelihood:                 6279.5
No. Observations:               29451   AIC:                        -1.239e+04
Df Residuals:                   29368   BIC:                        -1.170e+04
Df Model:                          82                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      7.7893      0.016    489.396      0.000         7.758     7.821
S              0.0040   4.57e-05     88.522      0.000         0.004     0.004
L              0.0033    4.3e-05     76.523      0.000         0.003     0.003
R             -0.0006      0.001     -0.442      0.658        -0.003     0.002
RW             0.0112      0.001     17.845      0.000         0.010     0.012
A             -0.0007   1.33e-05    -56.226      0.000        -0.001    -0.001
TS            -0.0103      0.000    -36.812      0.000        -0.011    -0.010
TT            -0.0076      0.000    -29.490      0.000        -0.008    -0.007
WOOD          -0.0647      0.003    -18.536      0.000        -0.071    -0.058
SOUTH          0.0189      0.003      6.441      0.000         0.013     0.025
CMD            0.0075      0.007      1.028      0.304        -0.007     0.022
IDD           -0.1119      0.005    -24.674      0.000        -0.121    -0.103
FAR           -0.0051      0.000    -21.854      0.000        -0.006    -0.005
01千代田区         1.0640      0.032     33.660      0.000         1.002     1.126
02中央区          0.7157      0.024     29.562      0.000         0.668     0.763
03港区           1.1219      0.008    140.268      0.000         1.106     1.138
04新宿区          0.7451      0.006    115.406      0.000         0.732     0.758
09品川区          0.7156      0.006    119.150      0.000         0.704     0.727
10目黒区          0.9468      0.006    153.032      0.000         0.935     0.959
11大田区          0.6454      0.006    115.996      0.000         0.635     0.656
12世田谷区         0.8481      0.006    136.153      0.000         0.836     0.860
13渋谷区          0.9867      0.007    145.349      0.000         0.973     1.000
200001         0.0974      0.010     10.050      0.000         0.078     0.116
200002         0.1201      0.009     12.821      0.000         0.102     0.138
200003         0.0939      0.010      9.543      0.000         0.075     0.113
200004         0.1157      0.009     13.069      0.000         0.098     0.133
200101         0.0932      0.009     10.036      0.000         0.075     0.111
200102         0.1017      0.010     10.658      0.000         0.083     0.120
200103         0.0919      0.009      9.992      0.000         0.074     0.110
200104         0.0654      0.008      8.474      0.000         0.050     0.081
200201         0.0540      0.009      6.004      0.000         0.036     0.072
200202         0.0557      0.009      6.452      0.000         0.039     0.073
200203         0.0479      0.009      5.066      0.000         0.029     0.066
200204         0.0542      0.007      7.298      0.000         0.040     0.069
200301         0.0531      0.009      5.699      0.000         0.035     0.071
200302         0.0457      0.009      5.162      0.000         0.028     0.063
200303         0.0359      0.010      3.431      0.001         0.015     0.056
200304         0.0392      0.008      4.746      0.000         0.023     0.055
200401         0.0443      0.010      4.621      0.000         0.026     0.063
200402         0.0699      0.008      8.502      0.000         0.054     0.086
200403         0.0563      0.007      7.915      0.000         0.042     0.070
200404         0.0719      0.007     10.833      0.000         0.059     0.085
200501         0.0818      0.007     11.159      0.000         0.067     0.096
200502         0.0751      0.007     10.401      0.000         0.061     0.089
200503         0.1233      0.008     16.434      0.000         0.109     0.138
200504         0.1373      0.007     19.733      0.000         0.124     0.151
200601         0.1383      0.008     17.379      0.000         0.123     0.154
200602         0.1835      0.007     25.494      0.000         0.169     0.198
200603         0.2090      0.008     25.765      0.000         0.193     0.225
200604         0.2415      0.008     31.805      0.000         0.227     0.256
200701         0.2534      0.008     30.380      0.000         0.237     0.270
200702         0.2965      0.008     36.114      0.000         0.280     0.313
200703         0.3151      0.008     38.456      0.000         0.299     0.331
200704         0.3045      0.008     37.612      0.000         0.289     0.320
200801         0.2547      0.010     26.345      0.000         0.236     0.274
200802         0.2506      0.008     30.349      0.000         0.234     0.267
200803         0.2600      0.009     28.714      0.000         0.242     0.278
200804         0.1833      0.009     20.702      0.000         0.166     0.201
200901         0.1100      0.010     11.353      0.000         0.091     0.129
200902         0.1228      0.009     14.199      0.000         0.106     0.140
200903         0.1304      0.009     14.088      0.000         0.112     0.149
200904         0.1355      0.011     12.038      0.000         0.113     0.158
201001         0.1661      0.012     14.253      0.000         0.143     0.189
201002         0.1484      0.012     12.873      0.000         0.126     0.171
201003         0.1394      0.011     12.250      0.000         0.117     0.162
201004         0.1337      0.011     12.636      0.000         0.113     0.154
201101         0.1201      0.012     10.339      0.000         0.097     0.143
201102         0.1155      0.012      9.943      0.000         0.093     0.138
201103         0.1546      0.012     12.923      0.000         0.131     0.178
201104         0.0887      0.008     11.359      0.000         0.073     0.104
201201         0.0770      0.011      7.179      0.000         0.056     0.098
201202         0.0608      0.010      6.062      0.000         0.041     0.080
201203         0.0884      0.010      8.839      0.000         0.069     0.108
201204         0.0759      0.008      9.167      0.000         0.060     0.092
201301         0.0638      0.011      5.647      0.000         0.042     0.086
201302         0.0621      0.010      5.980      0.000         0.042     0.082
201303         0.0595      0.011      5.491      0.000         0.038     0.081
201304         0.1164      0.009     12.284      0.000         0.098     0.135
201401         0.1051      0.012      8.867      0.000         0.082     0.128
201402         0.1262      0.011     11.282      0.000         0.104     0.148
201403         0.0840      0.011      7.491      0.000         0.062     0.106
201404         0.1333      0.009     14.201      0.000         0.115     0.152
201501         0.1275      0.011     11.415      0.000         0.106     0.149
201502         0.1660      0.009     18.006      0.000         0.148     0.184
201503         0.1628      0.013     12.561      0.000         0.137     0.188
==============================================================================
Omnibus:                     1987.103   Durbin-Watson:                   1.560
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             6973.740
Skew:                          -0.287   Prob(JB):                         0.00
Kurtosis:                       5.314   Cond. No.                     9.53e+17
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 1.07e-27. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

In [47]:
vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR']
eq = fml_build(vars)

y, X = dmatrices(eq, data=data02, return_type='dataframe')

CITY_NAME = pd.get_dummies(data02['CITY_NAME'])
TDQ = pd.get_dummies(data02['TDQ'])

X = pd.concat((X, CITY_NAME, TDQ), axis=1)

logy = np.log(y)

hed02_model = sm.OLS(logy, X, intercept=True)
hed02 = hed02_model.fit()
print(hed02.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      P   R-squared:                       0.762
Model:                            OLS   Adj. R-squared:                  0.761
Method:                 Least Squares   F-statistic:                     1277.
Date:                Sat, 03 Dec 2016   Prob (F-statistic):               0.00
Time:                        11:57:00   Log-Likelihood:                 16370.
No. Observations:               32426   AIC:                        -3.258e+04
Df Residuals:                   32344   BIC:                        -3.189e+04
Df Model:                          81                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      7.1563      0.011    627.286      0.000         7.134     7.179
S              0.0037   4.43e-05     83.665      0.000         0.004     0.004
L              0.0035   3.55e-05     97.239      0.000         0.003     0.004
R              0.0149      0.001     13.793      0.000         0.013     0.017
RW             0.0047      0.000      9.803      0.000         0.004     0.006
A             -0.0010   9.41e-06   -105.047      0.000        -0.001    -0.001
TS            -0.0115      0.000    -57.780      0.000        -0.012    -0.011
TT            -0.0058      0.000    -36.940      0.000        -0.006    -0.006
WOOD          -0.0260      0.004     -6.961      0.000        -0.033    -0.019
SOUTH          0.0153      0.002      7.603      0.000         0.011     0.019
CMD           -0.0454      0.005     -9.212      0.000        -0.055    -0.036
IDD           -0.0629      0.004    -15.727      0.000        -0.071    -0.055
FAR           -0.0001      0.000     -0.611      0.542        -0.000     0.000
05文京区          1.0807      0.004    260.091      0.000         1.073     1.089
06台東区          0.8159      0.007    112.057      0.000         0.802     0.830
14中野区          0.9545      0.003    310.989      0.000         0.948     0.961
15杉並区          1.0298      0.003    411.240      0.000         1.025     1.035
16豊島区          0.9149      0.003    269.277      0.000         0.908     0.922
17北区           0.7176      0.004    198.768      0.000         0.710     0.725
19板橋区          0.7750      0.003    228.199      0.000         0.768     0.782
20練馬区          0.8679      0.003    260.643      0.000         0.861     0.874
200001         0.1525      0.008     20.028      0.000         0.138     0.167
200002         0.1765      0.009     20.624      0.000         0.160     0.193
200003         0.1561      0.009     18.167      0.000         0.139     0.173
200004         0.1446      0.007     20.599      0.000         0.131     0.158
200101         0.1519      0.007     21.520      0.000         0.138     0.166
200102         0.1325      0.007     18.962      0.000         0.119     0.146
200103         0.1133      0.007     16.282      0.000         0.100     0.127
200104         0.0988      0.007     15.036      0.000         0.086     0.112
200201         0.0818      0.007     11.190      0.000         0.067     0.096
200202         0.0773      0.008     10.057      0.000         0.062     0.092
200203         0.0822      0.008     10.047      0.000         0.066     0.098
200204         0.0662      0.007      9.349      0.000         0.052     0.080
200301         0.0425      0.009      4.845      0.000         0.025     0.060
200302         0.0520      0.009      5.896      0.000         0.035     0.069
200303         0.0500      0.010      5.261      0.000         0.031     0.069
200304         0.0676      0.008      8.874      0.000         0.053     0.083
200401         0.0342      0.008      4.553      0.000         0.019     0.049
200402         0.0369      0.007      5.436      0.000         0.024     0.050
200403         0.0665      0.007     10.178      0.000         0.054     0.079
200404         0.0819      0.006     13.531      0.000         0.070     0.094
200501         0.0788      0.006     13.266      0.000         0.067     0.090
200502         0.0819      0.006     13.264      0.000         0.070     0.094
200503         0.0804      0.006     13.602      0.000         0.069     0.092
200504         0.1204      0.005     23.791      0.000         0.110     0.130
200601         0.1197      0.006     21.283      0.000         0.109     0.131
200602         0.1428      0.005     26.483      0.000         0.132     0.153
200603         0.1475      0.006     25.187      0.000         0.136     0.159
200604         0.1799      0.005     36.420      0.000         0.170     0.190
200701         0.1956      0.006     34.542      0.000         0.184     0.207
200702         0.2091      0.006     36.288      0.000         0.198     0.220
200703         0.2184      0.006     36.452      0.000         0.207     0.230
200704         0.2300      0.006     41.185      0.000         0.219     0.241
200801         0.2084      0.006     33.290      0.000         0.196     0.221
200802         0.1892      0.006     31.214      0.000         0.177     0.201
200803         0.1779      0.006     28.529      0.000         0.166     0.190
200804         0.1458      0.006     23.830      0.000         0.134     0.158
200901         0.1227      0.006     19.205      0.000         0.110     0.135
200902         0.1007      0.006     17.063      0.000         0.089     0.112
200903         0.0738      0.007     11.192      0.000         0.061     0.087
200904         0.1068      0.007     15.866      0.000         0.094     0.120
201001         0.0936      0.007     13.455      0.000         0.080     0.107
201002         0.1109      0.007     16.141      0.000         0.097     0.124
201003         0.1154      0.007     15.974      0.000         0.101     0.130
201004         0.1214      0.006     18.981      0.000         0.109     0.134
201101         0.1062      0.007     14.840      0.000         0.092     0.120
201102         0.1086      0.007     16.119      0.000         0.095     0.122
201103         0.1073      0.007     14.990      0.000         0.093     0.121
201104         0.1087      0.005     21.959      0.000         0.099     0.118
201201         0.0927      0.006     15.203      0.000         0.081     0.105
201202         0.0890      0.006     14.486      0.000         0.077     0.101
201203         0.0705      0.006     11.610      0.000         0.059     0.082
201204         0.0830      0.005     16.240      0.000         0.073     0.093
201301         0.0608      0.007      9.008      0.000         0.048     0.074
201302         0.0815      0.006     13.674      0.000         0.070     0.093
201303         0.0940      0.007     14.333      0.000         0.081     0.107
201304         0.0836      0.006     14.660      0.000         0.072     0.095
201401         0.0813      0.007     12.099      0.000         0.068     0.095
201402         0.1117      0.007     17.084      0.000         0.099     0.124
201403         0.1226      0.006     19.093      0.000         0.110     0.135
201404         0.1113      0.006     19.585      0.000         0.100     0.122
201501         0.1225      0.007     18.007      0.000         0.109     0.136
201502         0.1292      0.005     25.943      0.000         0.119     0.139
201503         0.1552      0.010     15.838      0.000         0.136     0.174
==============================================================================
Omnibus:                     4349.234   Durbin-Watson:                   1.653
Prob(Omnibus):                  0.000   Jarque-Bera (JB):            21732.841
Skew:                          -0.559   Prob(JB):                         0.00
Kurtosis:                       6.852   Cond. No.                     5.85e+17
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 2.54e-27. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

In [48]:
vars = ['P', 'S', 'L', 'R', 'RW', 'A', 'TS', 'TT', 'WOOD', 'SOUTH', 'CMD', 'IDD', 'FAR']
eq = fml_build(vars)

y, X = dmatrices(eq, data=data03, return_type='dataframe')

CITY_NAME = pd.get_dummies(data03['CITY_NAME'])
TDQ = pd.get_dummies(data03['TDQ'])

X = pd.concat((X, CITY_NAME, TDQ), axis=1)

logy = np.log(y)

hed03_model = sm.OLS(logy, X, intercept=True)
hed03 = hed03_model.fit()
print(hed03.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      P   R-squared:                       0.702
Model:                            OLS   Adj. R-squared:                  0.701
Method:                 Least Squares   F-statistic:                     460.8
Date:                Sat, 03 Dec 2016   Prob (F-statistic):               0.00
Time:                        11:57:00   Log-Likelihood:                 7893.5
No. Observations:               15511   AIC:                        -1.563e+04
Df Residuals:                   15431   BIC:                        -1.502e+04
Df Model:                          79                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      6.6433      0.015    430.813      0.000         6.613     6.673
S              0.0041      7e-05     58.407      0.000         0.004     0.004
L              0.0029    5.5e-05     52.739      0.000         0.003     0.003
R              0.0123      0.002      7.367      0.000         0.009     0.016
RW             0.0051      0.000     10.773      0.000         0.004     0.006
A             -0.0014   1.44e-05    -99.149      0.000        -0.001    -0.001
TS            -0.0093      0.000    -41.353      0.000        -0.010    -0.009
TT            -0.0050      0.000    -22.702      0.000        -0.005    -0.005
WOOD          -0.0674      0.007     -9.855      0.000        -0.081    -0.054
SOUTH          0.0242      0.003      8.422      0.000         0.019     0.030
CMD            0.0047      0.006      0.746      0.456        -0.008     0.017
IDD           -0.0120      0.003     -3.758      0.000        -0.018    -0.006
FAR            0.0010      0.000      4.751      0.000         0.001     0.001
07墨田区          1.1152      0.006    182.377      0.000         1.103     1.127
08江東区          1.2328      0.005    267.969      0.000         1.224     1.242
18荒川区          1.1024      0.006    196.415      0.000         1.091     1.113
21足立区          0.9930      0.004    275.396      0.000         0.986     1.000
22葛飾区          1.0406      0.004    291.411      0.000         1.034     1.048
23江戸川区         1.1592      0.004    294.424      0.000         1.151     1.167
200001         0.2294      0.018     12.923      0.000         0.195     0.264
200002         0.2023      0.016     12.542      0.000         0.171     0.234
200003         0.1808      0.018      9.868      0.000         0.145     0.217
200004         0.1839      0.014     13.032      0.000         0.156     0.212
200101         0.1631      0.013     12.555      0.000         0.138     0.189
200102         0.1755      0.013     13.774      0.000         0.151     0.200
200103         0.1587      0.014     11.415      0.000         0.131     0.186
200104         0.1419      0.012     11.566      0.000         0.118     0.166
200201         0.1464      0.013     10.867      0.000         0.120     0.173
200202         0.1047      0.013      7.972      0.000         0.079     0.130
200203         0.1085      0.014      7.669      0.000         0.081     0.136
200204         0.1033      0.012      8.515      0.000         0.080     0.127
200301         0.0737      0.013      5.786      0.000         0.049     0.099
200302         0.0709      0.012      5.928      0.000         0.047     0.094
200303         0.0654      0.014      4.820      0.000         0.039     0.092
200304         0.0576      0.011      5.405      0.000         0.037     0.078
200401         0.0931      0.012      7.704      0.000         0.069     0.117
200402         0.0788      0.012      6.427      0.000         0.055     0.103
200403         0.0774      0.013      6.061      0.000         0.052     0.102
200404         0.0866      0.010      8.257      0.000         0.066     0.107
200501         0.0782      0.009      8.489      0.000         0.060     0.096
200502         0.0946      0.009     10.341      0.000         0.077     0.113
200503         0.0897      0.010      9.075      0.000         0.070     0.109
200504         0.0999      0.009     11.357      0.000         0.083     0.117
200601         0.1075      0.009     12.117      0.000         0.090     0.125
200602         0.1370      0.009     15.867      0.000         0.120     0.154
200603         0.1391      0.009     15.779      0.000         0.122     0.156
200604         0.1508      0.009     17.251      0.000         0.134     0.168
200701         0.1698      0.009     19.120      0.000         0.152     0.187
200702         0.1893      0.009     21.571      0.000         0.172     0.207
200703         0.2023      0.009     23.290      0.000         0.185     0.219
200704         0.2163      0.008     25.790      0.000         0.200     0.233
200801         0.2029      0.009     23.723      0.000         0.186     0.220
200802         0.1761      0.009     20.324      0.000         0.159     0.193
200803         0.1728      0.009     19.366      0.000         0.155     0.190
200804         0.1420      0.008     17.525      0.000         0.126     0.158
200901         0.1112      0.009     12.773      0.000         0.094     0.128
200902         0.0987      0.008     12.075      0.000         0.083     0.115
200903         0.1102      0.008     13.412      0.000         0.094     0.126
200904         0.1060      0.009     11.982      0.000         0.089     0.123
201001         0.0771      0.010      7.653      0.000         0.057     0.097
201002         0.0944      0.009     10.282      0.000         0.076     0.112
201003         0.0917      0.009     10.221      0.000         0.074     0.109
201004         0.0902      0.008     10.823      0.000         0.074     0.107
201101         0.0642      0.009      7.411      0.000         0.047     0.081
201102         0.1205      0.008     14.559      0.000         0.104     0.137
201103         0.0841      0.009      9.639      0.000         0.067     0.101
201104         0.0591      0.006      9.786      0.000         0.047     0.071
201201         0.0383      0.008      4.805      0.000         0.023     0.054
201202         0.0188      0.008      2.402      0.016         0.003     0.034
201203         0.0042      0.009      0.482      0.629        -0.013     0.021
201204         0.0276      0.008      3.479      0.001         0.012     0.043
201301         0.0294      0.010      2.981      0.003         0.010     0.049
201302         0.0290      0.009      3.333      0.001         0.012     0.046
201303         0.0218      0.009      2.340      0.019         0.004     0.040
201304         0.0530      0.008      6.288      0.000         0.036     0.069
201401         0.0649      0.010      6.741      0.000         0.046     0.084
201402         0.0473      0.009      5.065      0.000         0.029     0.066
201403         0.0661      0.009      7.243      0.000         0.048     0.084
201404         0.0516      0.007      7.083      0.000         0.037     0.066
201501         0.0532      0.005      9.726      0.000         0.042     0.064
201502         0.0707      0.006     11.762      0.000         0.059     0.083
201503         0.0898      0.012      7.342      0.000         0.066     0.114
==============================================================================
Omnibus:                     1326.252   Durbin-Watson:                   1.694
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             5204.772
Skew:                          -0.363   Prob(JB):                         0.00
Kurtosis:                       5.743   Cond. No.                     3.12e+17
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 3.71e-27. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

In [ ]:
r.assign("data", data)

In [ ]:
r("t  <- sort(unique(data$TDQ))")
r("tt <- paste('factor(TDQ)', t, sep = "")")

In [ ]:
tt = r.get("tt")
TDQ_hd01 = hed01.params[1:(len(tt)+1)]
TDQ_hd02 = hed02.params[1:(len(tt)+1)]
TDQ_hd03 = hed03.params[1:(len(tt)+1)]

In [ ]:
index_hd_01 = np.exp(TDQ_hd01)
index_hd_02 = np.exp(TDQ_hd02)
index_hd_03 = np.exp(TDQ_hd03)

index_hd = np.array([index_hd_01, index_hd_02, index_hd_03])
plt.plot(index_hd.T)

In [ ]:
'''
par(mfrow = c(3, 1))
ts.plot(index_mean_ts[, 1], index_hd_ts[, 1], col = c("lightblue", "blue"),   lwd = c(1, 1.5), main = "都心5区・城南地域")
ts.plot(index_mean_ts[, 2], index_hd_ts[, 2], col = c("pink", "red"),         lwd = c(1, 1.5), main = "城西・城北地域")
ts.plot(index_mean_ts[, 3], index_hd_ts[, 3], col = c("lightgreen", "green"), lwd = c(1, 1.5), main = "城東地域")
par(mfrow = c(1, 1))


#Weight
volume01 <- tapply(data01$P, data01$TDQ, sum)
volume02 <- tapply(data02$P, data02$TDQ, sum)
volume03 <- tapply(data03$P, data03$TDQ, sum)
volume   <- tapply(data$P,   data$TDQ,   sum)

weight01 <- volume01 / volume
weight02 <- volume02 / volume
weight03 <- volume03 / volume
weight   <- cbind(weight01, weight02, weight03)

fixed_weight <- matrix(rep(weight[1, ], length(t)), ncol = 3, byrow = T)

#Las
index_laspeyres <- apply(index_hd * fixed_weight, 1, sum)

#Pache
index_paasche   <- apply(index_hd^-1 * weight, 1, sum)^-1

#Fisher 
index_fisher    <- (index_laspeyres * index_paasche)^0.5



#Plot
composite_index    <- cbind(index_laspeyres, index_paasche, index_fisher)
composite_index_ts <- ts(composite_index, start = 2000, end = 2015.5, freq = 4)
ts.plot(composite_index_ts, col = c("navy", "brown", "orange"))

ts.plot(index_hd_ts, composite_index_ts[, 1],   col = c("blue", "red", "green", "navy"),                    lwd = c(1, 1, 1, 2))
ts.plot(index_hd_ts, composite_index_ts[, 1:2], col = c("blue", "red", "green", "navy", "brown"),           lwd = c(1, 1, 1, 2, 2))
ts.plot(index_hd_ts, composite_index_ts[, 1:3], col = c("blue", "red", "green", "navy", "brown", "orange"), lwd = c(1, 1, 1, 2, 2, 3))


write.csv(weight,          "output/08_weight.csv")
write.csv(index_hd,        "output/09_index_hd.csv")
write.csv(composite_index, "output/10_composite_index.csv")'''