In [1]:
# Import libraries
import time as ttime
import numpy as np
from matplotlib import pyplot as plt
%matplotlib notebook
from skbeam.core.accumulators.histogram import Histogram
In [2]:
# define functions
def plcircle(ax, xy0,r,color=None):
'''plot circle
xy0 : tuple of x0, y0
r : radius
'''
phi = np.linspace(0.,2*np.pi,100)
x0, y0 = xy0
ax.plot(x0 + np.cos(phi)*r, y0 + np.sin(phi)*r,color=color)
# Image generator
def gen(N,Nx,Ny,mu0):
''' Generate a sequence of images mu0/R.'''
x = np.arange(-Nx//2,Nx//2+1)
y = np.arange(-Ny//2,Ny//2+1)
X, Y = np.meshgrid(x,y)
R = np.maximum(np.sqrt(X**2 + Y**2),1)
#mu = mu0*np.ones_like(R)
mu = mu0/R
for i in range(N):
yield np.random.poisson(mu).astype(float)
In [3]:
# Initialize parameters
# Number of pixels in x
Nx = 1000
# Number of pixels in y
Ny = 1000
# Number of times for image generator
Nt = 10
# Average count rate at center
mu0 = 1e4
# coordinates
x = np.arange(-Nx//2,Nx//2+1)
y = np.arange(-Ny//2,Ny//2+1)
X, Y = np.meshgrid(x,y)
R = np.maximum(np.sqrt(X**2 + Y**2),1)
# The bins to histogram in space
bins = R.ravel().astype(int)
In [4]:
# Initialize the histogram object
h = Histogram((196,5,200),(500,60,500))
# this array is just here to keep track of number of counts per ring
htot = Histogram((1,0,1.1),(500,60,500))
onesarr = np.ones_like(R.ravel()).astype(float)
fig, ((ax0,ax1),(ax2,ax3)) = plt.subplots(nrows=2,ncols=2)
In [5]:
for i,img in enumerate(gen(Nt,Nx,Ny,mu0)):
# count
h.fill(img.ravel(),R.ravel())
# keep track of counts per ring
htot.fill(onesarr,R.ravel())
# plot log of image
ax0.cla()
ax0.imshow(np.log10(np.maximum(img,1)))
ax0.set_aspect('equal')
plcircle(ax0, (Nx//2,Ny//2), 400,color='r')
ax0.autoscale_view('tight')
ax0.set_xlabel("x")
ax0.set_ylabel("y")
# plot the 2D histogram
ax1.cla();
w = np.where(htot.values[0] > 0)
ax1.imshow(np.log(np.maximum(h.values,1)/htot.values[0]))
ax1.set_aspect('auto')
ax1.axvline(h.centers[1][400],color='r')
ax1.set_ylabel("counts")
ax1.set_xlabel("radius (pixels)")
# plot the histogram at the row shown by the vertical line in the previous figure
ax2.cla();
#need to divide by number of counts per ring
ax2.plot(h.centers[0],h.values[:,400]/htot.values[0,400],'r')
ax2.autoscale_view('tight')
ax2.set_xlabel("counts")
ax2.set_ylabel("frequency (normalized)")
# plot the average intensity versus radius
ax3.cla();
ax3.loglog(h.centers[1],np.sum(h.values*(h.centers[0])[:,np.newaxis],axis=0)/htot.values[0])
ax3.autoscale_view('tight')
ax3.set_xlabel("r")
ax3.set_ylabel("<I>(r)")
fig.canvas.draw()
ttime.sleep(0.01)
In [ ]: