In [1]:
import sys
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('ticks')
sns.set_context(context='notebook',font_scale=1.3)
%matplotlib inline
In [2]:
%load_ext autoreload
%autoreload 2
In [3]:
# alter the line below to correspond to your file system
f = '../'
sys.path.append(f)
In [4]:
import skedm as edm
import skedm.data as data
In [5]:
x = data.logistic_map(sz=256, A=3.99, noise=.01, seed=36)
plt.plot(x);
In [6]:
x = data.noisy_periodic(sz=256, freq=52, noise=0.5, seed=36)
plt.plot(x)
Out[6]:
In [7]:
x = data.noise_1d(sz=256, seed=36)
plt.plot(x)
Out[7]:
In [8]:
X = data.lorenz(sz=10000, max_t=100.0, noise=0, parameters=(10.0, 2.6666666,28.0))
fig,ax = plt.subplots(nrows=3,sharex=True,figsize=(10,4))
ax[0].plot(X[:,0])
ax[1].plot(X[:,1])
ax[2].plot(X[:,2])
Out[8]:
In [9]:
x = data.chaos_2d(sz=128, A=3.99, eps=1.0, noise=.1, seed=36)
plt.imshow(x, cmap='magma')
plt.colorbar()
Out[9]:
In [10]:
x = data.periodic_2d(sz=128, freq=36, noise=0.5, seed=36)
plt.imshow(x, cmap='magma')
plt.colorbar()
Out[10]:
In [11]:
x = data.brown_noise(sz=128, num_walks=500, walk_sz=100000, spread=1000, seed=3)
plt.imshow(x, cmap='magma')
plt.colorbar()
Out[11]:
In [12]:
x = data.periodic_brown(sz=128, freq=36, seed=15)
plt.imshow(x, cmap='magma')
plt.colorbar()
Out[12]:
In [13]:
x = data.noise_2d(sz=128, seed=36)
plt.imshow(x, cmap='magma')
plt.colorbar()
Out[13]:
In [14]:
x = data.overlapping_circles(sz=256, rad=20.0, sigma=1, num_circles=1000)
plt.imshow(x, cmap='magma')
plt.colorbar()
Out[14]:
In [15]:
x = data.concentric_circles([2, 5, 10])
plt.imshow(x, cmap='jet')
plt.colorbar()
Out[15]:
In [16]:
np.unique(x)
Out[16]:
In [17]:
x = data.small_and_large_circles()
plt.imshow(x, cmap='jet')
plt.colorbar()
Out[17]:
In [18]:
np.unique(x)
Out[18]:
In [19]:
x = data.random_sized_circles([4,5,6], [5,7,8], sz=512, num_circs=3000)
plt.imshow(x, cmap='jet')
plt.colorbar()
Out[19]:
In [20]:
np.unique(x)
Out[20]:
In [21]:
x = data.voronoi_matrix(sz=512, percent=0.01, num_classes=27)
plt.imshow(x, cmap='jet')
plt.colorbar()
Out[21]:
In [22]:
np.unique(x)
Out[22]:
In [23]:
x = data.chaos_3d(sz=128, A=3.99, eps=1.0, steps=100, tstart=50)
In [24]:
x.shape
Out[24]:
In [25]:
fig,axes = plt.subplots(3,3,figsize=(10,10))
for i, ax in enumerate(axes.ravel()):
ax.imshow(x[:,:,i*10], cmap='magma')
ax.set_title(i*10)
In [ ]:
In [ ]: