Author: Ryan Abernathey
Many datasets have physical coordinates which differ from their logical coordinates. Xarray provides several ways to plot and analyze such datasets.
In [1]:
%matplotlib inline
import numpy as np
import pandas as pd
import xarray as xr
import cartopy.crs as ccrs
from matplotlib import pyplot as plt
print("numpy version : ", np.__version__)
print("pandas version : ", pd.__version__)
print("xarray version : ", xr.version.version)
As an example, consider this dataset from the xarray-data repository.
In [ ]:
! curl -L -O https://github.com/pydata/xarray-data/raw/master/RASM_example_data.nc
In [2]:
ds = xr.open_dataset('RASM_example_data.nc')
ds
Out[2]:
In this example, the logical coordinates are x
and y
, while the physical coordinates are xc
and yc
, which represent the latitudes and longitude of the data.
In [3]:
print(ds.xc.attrs)
print(ds.yc.attrs)
In [4]:
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(14,4))
ds.xc.plot(ax=ax1)
ds.yc.plot(ax=ax2)
Out[4]:
Note that the variables xc
(longitude) and yc
(latitude) are two-dimensional scalar fields.
If we try to plot the data variable Tair
, by default we get the logical coordinates.
In [7]:
ds.Tair[0].plot()
Out[7]:
In order to visualize the data on a conventional latitude-longitude grid, we can take advantage of xarray's ability to apply cartopy map projections.
In [7]:
plt.figure(figsize=(14,6))
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_global()
ds.Tair[0].plot.pcolormesh(ax=ax, transform=ccrs.PlateCarree(), x='xc', y='yc', add_colorbar=False)
ax.coastlines()
ax.set_ylim([0,90]);
The above example allowed us to visualize the data on a regular latitude-longitude grid. But what if we want to do a calculation that involves grouping over one of these physical coordinates (rather than the logical coordinates), for example, calculating the mean temperature at each latitude. This can be achieved using xarray's groupby
function, which accepts multidimensional variables. By default, groupby
will use every unique value in the variable, which is probably not what we want. Instead, we can use the groupby_bins
function to specify the output coordinates of the group.
In [8]:
# define two-degree wide latitude bins
lat_bins = np.arange(0,91,2)
# define a label for each bin corresponding to the central latitude
lat_center = np.arange(1,90,2)
# group according to those bins and take the mean
Tair_lat_mean = ds.Tair.groupby_bins('xc', lat_bins, labels=lat_center).mean()
# plot the result
Tair_lat_mean.plot()
Out[8]:
Note that the resulting coordinate for the groupby_bins
operation got the _bins
suffix appended: xc_bins
. This help us distinguish it from the original multidimensional variable xc
.