In [2]:
from pylearn2.utils.serial import load as load_model
from pylearn2.gui.get_weights_report import get_weights_report
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import os.path
import io
from IPython.display import display, Image
In [181]:
model = load_model(os.path.expandvars('${DATA_DIR}/plankton/models/alexnet_based_-_the_return_experiment_recent.pkl'))
In [130]:
print('## Model structure summary\n')
print(model)
params = model.get_params()
n_params = {p.name : p.get_value().size for p in params}
total_params = sum(n_params.values())
print('\n## Number of parameters\n')
print(' ' + '\n '.join(['{0} : {1} ({2:.1f}%)'.format(k, v, 100.*v/total_params)
for k, v in sorted(n_params.items(), key=lambda x: x[0])]))
print('\nTotal : {0}'.format(total_params))
Plot train and valid set NLL
In [187]:
tr = np.array(model.monitor.channels['valid_y_y_1_nll'].time_record) / 3600.
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(111)
ax1.plot(model.monitor.channels['valid_y_y_1_nll'].val_record)
ax1.plot(model.monitor.channels['train_y_y_1_nll'].val_record)
ax1.set_xlabel('Epochs')
ax1.legend(['Valid', 'Train'])
ax1.set_ylabel('NLL')
ax1.set_ylim(0., 5.)
ax1.grid(True)
ax2 = ax1.twiny()
ax2.set_xticks(np.arange(0,tr.shape[0],20))
ax2.set_xticklabels(['{0:.2f}'.format(t) for t in tr[::20]])
ax2.set_xlabel('Hours')
Out[187]:
In [186]:
print(model.yaml_src)
In [183]:
pv = get_weights_report(model=model)
img = pv.get_img()
img = img.resize((4*img.size[0], 4*img.size[1]))
img_data = io.BytesIO()
img.save(img_data, format='png')
display(Image(data=img_data.getvalue(), format='png'))
In [173]:
plt.plot(model.monitor.channels['learning_rate'].val_record)
Out[173]:
Plot ratio of update norms to parameter norms across epochs for different layers
In [174]:
h1_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_h1_W_kernel_norm_mean'].val_record])
h1_W_norms = np.array([float(v) for v in model.monitor.channels['valid_h1_kernel_norms_mean'].val_record])
plt.plot(h1_W_norms / h1_W_up_norms)
plt.ylim(0,1000)
plt.show()
plt.plot(model.monitor.channels['valid_h1_kernel_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_h1_kernel_norms_max'].val_record)
Out[174]:
In [175]:
h2_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_h2_W_kernel_norm_mean'].val_record])
h2_W_norms = np.array([float(v) for v in model.monitor.channels['valid_h2_kernel_norms_mean'].val_record])
plt.plot(h2_W_norms / h2_W_up_norms)
plt.show()
plt.plot(model.monitor.channels['valid_h2_kernel_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_h2_kernel_norms_max'].val_record)
Out[175]:
In [176]:
h3_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_h3_W_kernel_norm_mean'].val_record])
h3_W_norms = np.array([float(v) for v in model.monitor.channels['valid_h3_kernel_norms_mean'].val_record])
plt.plot(h3_W_norms / h3_W_up_norms)
plt.show()
plt.plot(model.monitor.channels['valid_h3_kernel_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_h3_kernel_norms_max'].val_record)
Out[176]:
In [177]:
h4_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_h4_W_kernel_norm_mean'].val_record])
h4_W_norms = np.array([float(v) for v in model.monitor.channels['valid_h4_kernel_norms_mean'].val_record])
plt.plot(h4_W_norms / h4_W_up_norms)
plt.show()
plt.plot(model.monitor.channels['valid_h4_kernel_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_h4_kernel_norms_max'].val_record)
Out[177]:
In [178]:
h5_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_h5_W_kernel_norm_mean'].val_record])
h5_W_norms = np.array([float(v) for v in model.monitor.channels['valid_h5_kernel_norms_mean'].val_record])
plt.plot(h5_W_norms / h5_W_up_norms)
plt.show()
plt.plot(model.monitor.channels['valid_h5_kernel_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_h5_kernel_norms_max'].val_record)
Out[178]:
In [179]:
h6_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_h6_W_col_norm_mean'].val_record])
h6_W_norms = np.array([float(v) for v in model.monitor.channels['valid_h6_col_norms_mean'].val_record])
plt.plot(h6_W_norms / h6_W_up_norms)
plt.show()
plt.plot(model.monitor.channels['valid_h6_col_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_h6_col_norms_max'].val_record)
Out[179]:
In [180]:
y_W_up_norms = np.array([float(v) for v in model.monitor.channels['mean_update_softmax_W_col_norm_mean'].val_record])
y_W_norms = np.array([float(v) for v in model.monitor.channels['valid_y_y_1_col_norms_mean'].val_record])
plt.plot(y_W_norms / y_W_up_norms)
plt.show()
plt.plot(model.monitor.channels['valid_y_y_1_col_norms_mean'].val_record)
plt.plot(model.monitor.channels['valid_y_y_1_col_norms_max'].val_record)
Out[180]:
In [ ]: