Import the main analysis module and tractography module. Use the analysis module to download a raw brain of interest, then use the tractography function "nii_to_tiff_stack" to save a .nii as a TIFF stack.
In [1]:
import tractography as tract
In [2]:
import analysis3 as a3
In [3]:
output = a3.get_raw_brain("s275", "userToken.pem", save = True)
In [4]:
tract.nii_to_tiff_stack("s275_raw.nii", "s275")
In [5]:
data = tract.tiff_stack_to_array("s275_TIFFs/")
(62, 51, 1114)
In [6]:
tract.generate_FSL_structure_tensor(data, "s275")
Start DoG Sigma on 1
Start Gauss Sigma with gausigma = 2.3
Generating Gaussian kernel...
Blurring gradient products...
Saving a copy for this Gaussian sigma...
Completed computing structure tensor on s275!
Out[6]:
array([[[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
...,
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]]],
[[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
...,
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]]],
[[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
...,
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]]],
...,
[[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 1, 1, 0, 0, 0],
[ 0, 1, 1, 0, 1, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
...,
[[ 0, 0, 25, 0, 32, 1],
[ 0, 0, 33, 0, 41, 1],
[ 1, 0, 39, 1, 47, 1],
...,
[ 0, 0, 10, 0, 8, 1],
[ 0, 0, 6, 0, 5, 0],
[ 0, 0, 4, 0, 3, 0]],
[[ 0, 0, 16, 0, 23, 1],
[ 0, 0, 22, 0, 29, 1],
[ 0, 0, 26, 0, 34, 1],
...,
[ 0, 0, 7, 0, 6, 0],
[ 0, 0, 4, 0, 3, 0],
[ 0, 0, 2, 0, 2, 0]],
[[ 0, 0, 9, 0, 15, 0],
[ 0, 0, 13, 0, 19, 0],
[ 0, 0, 16, 0, 22, 0],
...,
[ 0, 0, 4, 0, 4, 0],
[ 0, 0, 2, 0, 2, 0],
[ 0, 0, 1, 0, 1, 0]]],
[[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 1, 1, 0, 0, 0],
[ 0, 1, 1, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
...,
[[ 0, 0, 19, 0, 23, 1],
[ 0, 0, 25, 0, 29, 1],
[ 0, 0, 29, 0, 34, 1],
...,
[ 0, 0, 8, 0, 5, 0],
[ 0, 0, 5, 0, 3, 0],
[ 0, 0, 3, 0, 2, 0]],
[[ 0, 0, 12, 0, 16, 0],
[ 0, 0, 16, 0, 20, 0],
[ 0, 0, 19, 0, 23, 0],
...,
[ 0, 0, 5, 0, 4, 0],
[ 0, 0, 3, 0, 2, 0],
[ 0, 0, 1, 0, 1, 0]],
[[ 0, 0, 6, 0, 10, 0],
[ 0, 0, 9, 0, 13, 0],
[ 0, 0, 11, 0, 15, 0],
...,
[ 0, 0, 3, 0, 3, 0],
[ 0, 0, 2, 0, 2, 0],
[ 0, 0, 1, 0, 1, 0]]],
[[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
[[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 1, 1, 0, 0, 0],
...,
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0]],
...,
[[ 0, 0, 13, 0, 14, 0],
[ 0, 0, 17, 0, 19, 0],
[ 0, 0, 20, 0, 22, 0],
...,
[ 0, 0, 5, 0, 3, 0],
[ 0, 0, 3, 0, 2, 0],
[ 0, 0, 2, 0, 1, 0]],
[[ 0, 0, 8, 0, 10, 0],
[ 0, 0, 10, 0, 13, 0],
[ 0, 0, 12, 0, 15, 0],
...,
[ 0, 0, 3, 0, 2, 0],
[ 0, 0, 2, 0, 1, 0],
[ 0, 0, 1, 0, 1, 0]],
[[ 0, 0, 4, 0, 6, 0],
[ 0, 0, 6, 0, 8, 0],
[ 0, 0, 7, 0, 9, 0],
...,
[ 0, 0, 2, 0, 2, 0],
[ 0, 0, 1, 0, 1, 0],
[ 0, 0, 1, 0, 0, 0]]]], dtype=uint8)
In [ ]:
Content source: NeuroDataDesign/seelviz
Similar notebooks: