This nice little code will write a visualization of the Mandelbrot set, on the domain $[-3, 3] \times [-3i, 3i]$, for $1500 \times 1500$ points, as a Bitmap (written manually in binary).
In [2]:
%%time
b_ = (
255,
lambda
V ,B,c
:c and Y(V*V+B,B, c
-1)if(abs(V)<6)else
( 2+c-4*abs(V)**-0.4)/i
) ;v, x=1500,1000;C=range(v*x
);import struct;P=struct.pack;M,\
j ='<QIIHHHH',open('art/M.bmp','wb').write
for X in j('BM'+P(M,v*x*3+26,26,12,v,x,1,24))or C:
i ,Y=_;j(P('BBB',*(lambda T:(T*80+T**9
*i-950*T **99,T*70-880*T**18+701*
T **9 ,T*i**(1-T**45*2)))(sum(
[ Y(0,(A%3/3.+X%v+(X/v+
A/3/3.-x/2)/1j)*2.5
/x -2.7,i)**2 for \
A in C
[:9]])
/9)
) )
This second nice little code will write a visualization of a Penrose tiling (infinite pattern) to a PNG image, of resolution $2000 \times 2000$.
In [3]:
%%time
_ =\
"""if!
1:"e,V=200
0,(0j-1)**-.2;
v,S=.5/ V.real,
[(0,0,4 *e,4*e*
V)];w=1 -v"def!
E(T,A, B,C):P
,Q,R=B*w+ A*v,B*w+C
*v,A*w+B*v;retur n[(1,Q,C,A),(1,P
,Q,B),(0,Q,P,A)]*T+[(0,C ,R,B),(1,R,C,A)]*(1-T)"f
or!i!in!_[:11]:S =sum([E (*x)for !x!in!S],[])"imp
ort!cair o!as!O; s=O.Ima geSurfac
e(1,e,e) ;c=O.Con text(s); M,L,G=c.
move_to ,c.line_to,c.s et_sour
ce_rgb a"def!z(f,a) :f(-a.
imag,a. real-e-e)"for!T,A,B,C!in[i !for!i!
in!S!if!i[""";exec(reduce(lambda x,i:x.replace(chr
(i),"\n "[34-i:]), range( 35),_+"""0]]:z(M,A
);z(L,B);z (L,C); c.close_pa
th()"G (.4,.3 ,1);c.
paint( );G(.7 ,.7,1)
;c.fil l()"fo r!i!in
!range (9):"! g=1-i/
8;d=i/ 4*g;G(d,d,d, 1-g*.8
)"!def !y(f,a):z(f,a+(1+2j)*( 1j**(i
/2.))*g)"!for!T,A,B,C!in!S:y(M,C);y(L,A);y(M
,A);y(L,B)"!c.st roke()"s.write_t
o_png('art/ penrose.png')
""" ))
In [26]:
%%time
_ =r"""A(W/2,*M(3*G
*G*V(2*J%P),G,J,G)+((M((J-T
)*V((G-S)%P),S,T,G)if(S@(G,J))if(
W%2@(S,T)))if(W@(S,T);H=2**256;import&h
ashlib&as&h,os,re,bi nascii&as&k;J$:int(
k.b2a_hex(W),16);C$:C (W/ 58)+[W%58]if(W@
[];X=h.new("rip em d160");Y$:h.sha25
6(W).digest();I$ d=32:I(W/256,d-1)+
chr(W%256)if(d>0@""; U$:J(k.a2b_base
64(W));f=J(os.urando m(64)) %(H-U("AUVRIxl
Qt1/EQC2hcy/JvsA="))+ 1;M$Q,R,G :((W*W-Q-G)%P,
(W*(G+2*Q-W*W)-R)%P) ;P=H-2** 32-977;V$Q=P,L=
1,O=0:V(Q%W,W,O-Q/W* L,L)if(W@O%P;S,
T=A(f,U("eb5mfvncu6 xVoGKVzocLBwKb/Nst
zijZWfKBWxb4F5g="), U("SDra dyajxGVdpPv8DhEI
qP0XtEimhVQZnEfQj/ sQ1Lg="), 0,0);F$:"1"+F(W
[1:])if(W[:1 ]=="\0"@"" .join(map(B,C(
J(W))));K$: F(W +Y(Y(W))[:4]);
X.update(Y("\4"+ I(S)+I(T)));B$
:re.sub("[0OIl _]| [^\\w]","","".jo
in(map(chr,ra nge (123))))[W];print"Addre
ss:",K("\0"+X.dig est())+"\nPrivkey:",K(
"\x80"+I(f))""";exec(reduce(lambda W,X:
W.replace(*X),zip(" \n&$@",["","",
" ","=lambda W,",")else "])
,"A$G,J,S,T:"+_))
Disclaimer: I am not the author of these small examples!
That's it for today!