In [1]:
import numpy as np
import timeit
from csxtools.image import rotate90
from csxtools.fastccd import correct_images
In [2]:
big_array = np.ones((10000,960,960), dtype=np.float32)
In [3]:
t = timeit.timeit('rotate90(big_array, "cw")', globals=globals(), number=10) / 10
print('Rotation of {} matrix takes {} seconds'.format(big_array.shape, t))
In [4]:
big_array = np.ones((10000,960,960), dtype=np.uint16)
bgnd = np.zeros((960,960), dtype=np.float32)
bgnd = np.array((bgnd,bgnd,bgnd), dtype=np.float32)
ff = np.ones((960,960), dtype=np.float32)
In [5]:
def adjust_gain_and_subtract_bg(raw_data, bg, ff):
G1 = int('0b1100000000000000',2)
G2 = int('0b1000000000000000',2)
G8 = int('0b0000000000000000',2)
M = int('0b0001111111111111',2)
images = ( ((raw_data & M) - bg[0]) * ((raw_data & G1) == G1) * 8 +
((raw_data & M) - bg[1]) * ((raw_data & G1) == G2) * 4 +
((raw_data & M) - bg[2]) * ((raw_data & G1) == G8) * 1 )
images = images * ff
return images
In [6]:
t = timeit.timeit('adjust_gain_and_subtract_bg(big_array,bgnd,ff)', globals=globals(), number=1)/1
print('Correction of {} matrix takes {} seconds using NUMPY'.format(big_array.shape, t))
In [7]:
t = timeit.timeit('correct_images(big_array,bgnd,ff)', globals=globals(), number=10)/10
print('Correction of {} matrix takes {} seconds using CSXTOOLS'.format(big_array.shape, t))
In [8]:
big_array = np.ones((10000,960,960), dtype=np.float32)
In [9]:
t = timeit.timeit('np.mean(big_array, axis=0)', globals=globals(), number=10)
print('Numpy Mean of {} matrix takes {} seconds'.format(big_array.shape, t/10))
In [10]:
import csxtools
csxtools.__version__
Out[10]:
In [ ]: