In [1]:
# porto_seguro_insur.py
# Assumes python vers. 3.6
# __author__ = 'mizio'
import csv as csv
import numpy as np
import pandas as pd
import pylab as plt
from fancyimpute import MICE
import random
from sklearn.model_selection import cross_val_score
import datetime
import seaborn as sns
import tensorflow as tf
import matplotlib.gridspec as gridspec
from sklearn.preprocessing import StandardScaler
from sklearn.manifold import TSNE
In [2]:
class PortoSeguroInsur:
def __init__(self):
self.df = PortoSeguroInsur.df
self.df_test = PortoSeguroInsur.df_test
self.df_submission = PortoSeguroInsur.df_submission
self.timestamp = datetime.datetime.now().strftime('%Y%m%d_%Hh%Mm%Ss')
# Load data into Pandas DataFrame
# For .read_csv, always use header=0 when you know row 0 is the header row
df = pd.read_csv('../input/train.csv', header=0)
df_test = pd.read_csv('../input/test.csv', header=0)
df_submission = pd.read_csv('../input/sample_submission.csv', header=0)
@staticmethod
def features_with_null_logical(df, axis=1):
row_length = len(df._get_axis(0))
# Axis to count non null values in. aggregate_axis=0 implies counting for every feature
aggregate_axis = 1 - axis
features_non_null_series = df.count(axis=aggregate_axis)
# Whenever count() differs from row_length it implies a null value exists in feature column and a False in mask
mask = row_length == features_non_null_series
return mask
def missing_values_in_dataframe(self, df):
mask = self.features_with_null_logical(df)
print(df[mask[mask == 0].index.values].isnull().sum())
print('\n')
@staticmethod
def extract_numerical_features(df):
df = df.copy()
df = df.copy()
non_numerical_feature_names = df.columns[np.where(PortoSeguroInsur.numerical_feature_logical_incl_hidden_num(
df) == 0)]
return non_numerical_feature_names
@staticmethod
def extract_non_numerical_features(df):
df = df.copy()
non_numerical_feature_names = df.columns[np.where(PortoSeguroInsur.numerical_feature_logical_incl_hidden_num(
df))]
return non_numerical_feature_names
@staticmethod
def numerical_feature_logical_incl_hidden_num(df):
logical_of_non_numeric_features = np.zeros(df.columns.shape[0], dtype=int)
for ite in np.arange(0, df.columns.shape[0]):
try:
str(df[df.columns[ite]][0]) + df[df.columns[ite]][0]
logical_of_non_numeric_features[ite] = True
except TypeError:
hej = 'Oops'
return logical_of_non_numeric_features
def clean_data(self, df, is_train_data=1):
df = df.copy()
if df.isnull().sum().sum() > 0:
if is_train_data:
df = df.dropna()
else:
df = df.dropna(1)
return df
def reformat_data(self, labels, num_labels):
# Map labels/target value to one-hot-encoded frame. None is same as implying newaxis() just replicating array
# if num_labels > 2:
labels = (np.arange(num_labels) == labels[:, None]).astype(np.float64)
return labels
def accuracy(self, predictions, labels):
# Sum the number of cases where the predictions are correct and divide by the number of predictions
number_of_correct_predictions = np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
return 100*number_of_correct_predictions/predictions.shape[0]
def linear_model(self, input_vector, weight_matrix, bias_vector):
# f(x) = Wx + b
# W is the weight matrix with elements w_ij
# x is the input vector
# b is the bias vector
# In the machine learning literature f(x) is called an activation
return tf.matmul(input_vector, weight_matrix) + bias_vector
def activation_out(self, logit):
return self.activation(logit, switch_var=0)
def activation_hidden(self, logit):
return self.activation(logit, switch_var=0)
def activation(self, logit, switch_var=0):
# Also called the activation function
if switch_var == 0:
# Logistic sigmoid function.
# sigma(a) = 1/(1+exp(-a))
return tf.nn.sigmoid(logit)
elif switch_var == 1:
# Using Rectifier as activation function. Rectified linear unit (ReLU). Compared to sigmoid or other
# activation functions it allows for faster and effective training of neural architectures.
# f(x) = max(x,0)
return tf.nn.relu(logit)
else:
# Softmax function.
# S(y_i) = e^y_i/(Sum_j e^y_j)
return tf.nn.softmax(logit)
def missing_values_in_dataframe(self, df):
mask = self.features_with_null_logical(df)
print(df[mask[mask == 0].index.values].isnull().sum())
print('\n')
@staticmethod
def extract_numerical_features(df):
df = df.copy()
# Identify numerical columns which are of type object
numerical_features = pd.Series(data=False, index=df.columns, dtype=bool)
for feature in df.columns:
if any(tuple(df[feature].apply(lambda x: type(x)) == int)) or \
any(tuple(df[feature].apply(lambda x: type(x)) == float)) & \
(not any(tuple(df[feature].apply(lambda x: type(x)) == str))):
numerical_features[feature] = 1
return numerical_features[numerical_features == 1].index
In [3]:
porto_seguro_insur = PortoSeguroInsur()
df = porto_seguro_insur.df.copy()
df_test = porto_seguro_insur.df_test.copy()
df_submission = porto_seguro_insur.df_submission.copy()
df = df.replace(-1, np.NaN)
df_test = df_test.replace(-1, np.NaN)
print('All df set missing values')
porto_seguro_insur.missing_values_in_dataframe(df)
# Train Data: numeric feature columns with none or nan in test data
print('\nColumns in train data with none/nan values:')
print('\nTraining set numerical features\' missing values')
df_numerical_features = porto_seguro_insur.extract_numerical_features(df)
print('\nNumber of numerical features df: %s' % df_numerical_features.shape[0])
porto_seguro_insur.missing_values_in_dataframe(df[df_numerical_features])
# Test Data: Print numeric feature columns with none/nan in test data
print('\nColumns in test data with none/nan values:')
print('\nTest set numerical features\' missing values')
df_test_numerical_features = porto_seguro_insur.extract_numerical_features(df_test)
print('\nNumber of numerical features df_test: %s' % df_test_numerical_features.shape[0])
porto_seguro_insur.missing_values_in_dataframe(df_test[df_test_numerical_features])
print(df.shape)
print(df_test.shape)
# Clean data for NaN
df = porto_seguro_insur.clean_data(df)
df_test = porto_seguro_insur.clean_data(df_test, is_train_data=0)
print('df_test.shape: %s' % str(df_test.shape)) # (892816, 46)
# df_test = porto_seguro_insur.clean_data(df_test, is_train_data=0)
id_df_test = df_test['id'] # Submission column
print("After dropping NaN")
print(df.shape)
print(df_test.shape)
In [4]:
is_explore_data = 1
if is_explore_data:
# Overview of train data
print('\n TRAINING DATA:----------------------------------------------- \n')
print(df.head(3))
print('\n')
print(df.info())
print('\n')
print(df.describe())
print('\n')
print(df.dtypes)
print(df.get_dtype_counts())
# missing_values
print('All df set missing values')
porto_seguro_insur.missing_values_in_dataframe(df)
print('Uniques')
uniques_in_id = np.unique(df.id.values).shape[0]
print(uniques_in_id)
print('uniques_in_id == df.shape[0]')
print(uniques_in_id == df.shape[0])
# Overview of sample_submission format
print('\n sample_submission \n')
print(df_submission.head(3))
print('\n')
print(df_submission.info())
print('\n')
In [5]:
# Categorical plot with seaborn
is_categorical_plot = 1
if is_categorical_plot:
# sns.countplot(y='MSZoning', hue='MSSubClass', data=df, palette='Greens_d')
# plt.show()
# sns.stripplot(x='SalePrice', y='MSZoning', data=df, jitter=True, hue='LandContour')
# plt.show()
# sns.boxplot(x='SalePrice', y='MSZoning', data=df, hue='MSSubClass')
# plt.show()
# Heatmap of feature correlations
print('\nCorrelations in training data')
plt.figure(figsize=(10, 8))
correlations_train = porto_seguro_insur.df.corr()
sns.heatmap(correlations_train, vmax=0.8, square=True)
plt.show()
# Heatmap of feature correlations
print('\nCorrelations in test data')
plt.figure(figsize=(10, 8))
correlations_test = porto_seguro_insur.df_test.corr()
sns.heatmap(correlations_test, vmax=0.8, square=True)
plt.show()
In [6]:
# Zoom of heatmap with coefficients
plt.figure(figsize=(20, 12))
top_features = 10
columns = correlations_train.nlargest(top_features, 'target')['target'].index
correlation_coeff = np.corrcoef(porto_seguro_insur.df[columns].values.T)
sns.set(font_scale=1.20)
coeff_heatmap = sns.heatmap(correlation_coeff, annot=True, cmap='YlGn', cbar=True,
square=True, fmt='.2f', annot_kws={'size': 10},
yticklabels=columns.values, xticklabels=columns.values)
plt.show()
Note that correlations with target are low. The best features are ps_car_13 and ps_car_12. Check if there are categorical features that need to be one-hot-encoded. Example note that in features we have, ps_ind_02_cat and ps_ind_06_bin where 'cat' and 'bin' may be abbreviations for categorical and binary feature values.
In [7]:
# Check output space for each feature. Expect 58 uniques i.e. one for every feature.
ser_with_uniques = pd.Series()
for ite in df.columns:
ser_with_uniques[ite] = df[ite].unique().shape[0]
print(ser_with_uniques)
In [8]:
# Check if two-value features are binaries
indices_of_two_value_feats = ser_with_uniques == 2
print(indices_of_two_value_feats)
In [9]:
feats_with_two_value = ser_with_uniques[indices_of_two_value_feats]
print(feats_with_two_value.axes[0])
print(type(feats_with_two_value.axes))
In [10]:
ser_with_max_of_uniques = pd.Series()
for ite in feats_with_two_value.axes[0]:
ser_with_max_of_uniques[ite] = df[ite].unique()
ser_with_max_of_uniques
Out[10]:
Hence the two-value features are binaries.
In [11]:
# Select the anonymized features that are preprocessed
print(porto_seguro_insur.df.columns)
print(porto_seguro_insur.df.shape)
anonym_cols = porto_seguro_insur.df.ix[:, 2:59].columns
print(anonym_cols)
print(anonym_cols.shape[0])
In [12]:
num_of_cols = anonym_cols.shape[0]
plt.figure(figsize=(14,num_of_cols*4))
gspec = gridspec.GridSpec(num_of_cols, 1)
bins = 50
for ite, col in enumerate(porto_seguro_insur.df[anonym_cols]):
ax = plt.subplot(gspec[ite])
plt.hist(porto_seguro_insur.df[col][porto_seguro_insur.df.target == 1], bins=bins, alpha=0.4)
plt.hist(porto_seguro_insur.df[col][porto_seguro_insur.df.target == 0], bins=bins, alpha=0.3)
plt.yscale('log')
ax.set_title('Histogram of feature: %s' % col)
plt.show()
In [24]:
# Take out 10000 data points with claims
samples = 6000
df_compare = pd.concat([porto_seguro_insur.df[porto_seguro_insur.df.target == 1].sample(n=samples),
porto_seguro_insur.df[porto_seguro_insur.df.target == 0].sample(n=samples)], axis=0)
In [25]:
# Scale data
standar_scaler = StandardScaler()
df_compare_std = standar_scaler.fit_transform(df_compare)
target_values = df_compare.ix[:, -1].values
In [26]:
# tsne
tsne = TSNE(n_components=2, random_state=0)
train_2d = tsne.fit_transform(df_compare_std)
In [27]:
# Scatter plot with both claim/non claim pts.
color_map = {0:'blue', 1:'red'}
plt.figure()
for color_idx, target in enumerate(np.unique(target_values)):
plt.scatter(x=train_2d[target_values == target, 0],
y=train_2d[target_values == target, 1], c=color_map[color_idx], label=target)
plt.xlabel('X in t-SNE')
plt.ylabel('Y in t-SNE')
plt.legend(loc='upper left')
plt.title('t-SNE of train data')
plt.show()
In [29]:
# Use top 10
top_features = 10
columns = correlations_train.nlargest(top_features, 'target')['target'].index
df_compare[columns]
Out[29]:
In [30]:
# Take out 10000 data points with claims
samples = 6000
df_compare = pd.concat([porto_seguro_insur.df[porto_seguro_insur.df.target == 1].sample(n=samples),
porto_seguro_insur.df[porto_seguro_insur.df.target == 0].sample(n=samples)], axis=0)
In [31]:
# Scale data
standar_scaler = StandardScaler()
df_compare_std = standar_scaler.fit_transform(df_compare[columns])
target_values = df_compare.ix[:, -1].values
In [32]:
# tsne
tsne = TSNE(n_components=2, random_state=0)
train_2d = tsne.fit_transform(df_compare_std)
In [33]:
# Scatter plot with both claim/non claim pts.
color_map = {0:'blue', 1:'red'}
plt.figure()
for color_idx, target in enumerate(np.unique(target_values)):
plt.scatter(x=train_2d[target_values == target, 0],
y=train_2d[target_values == target, 1], c=color_map[color_idx], label=target)
plt.xlabel('X in t-SNE')
plt.ylabel('Y in t-SNE')
plt.legend(loc='upper left')
plt.title('t-SNE of train data')
plt.show()
In [18]:
is_prepare_data = 0
if is_prepare_data:
df_test_num_features = porto_seguro_insur.extract_numerical_features(df_test)
df_y = df.loc[:, ['target']]
df = df.loc[:, df_test_num_features]
is_prediction = 0
if is_prediction:
# Subset the data to make it run faster
# (595212, 59)
# (892816, 58)
# After dropping NaN
# (124931, 59)
# (186567, 58)
subset_size = 20000
num_labels = np.unique(df_y.loc[:subset_size, 'target'].values).shape[0]
num_columns = df[(df.columns[(df.columns != 'target') & (df.columns != 'id')])].shape[1]
# Reformat datasets
x_train = df.loc[:subset_size, (df.columns[(df.columns != 'target') & (df.columns != 'id')])].values
y_train = df_y.loc[:subset_size, 'target'].values
# We only need to one-hot-encode our labels since otherwise they will not match the dimension of the
# logits in our later computation.
y_train = porto_seguro_insur.reformat_data(y_train, num_labels=num_labels)
# Todo: we need testdata with labels to benchmark test results.
# Hack. Use subset of training data (not used in training model) as test data, since it has a label/target value
# In case there are duplicates in training data it may imply that test results are too good, when using
# a subset of training data for test.
# Todo: do cross-validation instead of only one subset testing as below in x_val
# Validation data is a subset of training data.
x_val = df.loc[subset_size:2*subset_size, (df.columns[(df.columns != 'target') & (df.columns != 'id')])].values
y_val = df_y.loc[subset_size:2*subset_size, 'target'].values
y_val = porto_seguro_insur.reformat_data(y_val, num_labels=num_labels)
# Test data.
x_test = df_test.loc[:, (df_test.columns[(df_test.columns != 'id')])].values
# Todo: we need validation data with labels to perform crossvalidation while training and get a better result.
# Tensorflow uses a dataflow graph to represent your computations in terms of dependencies.
graph = tf.Graph()
with graph.as_default():
# Load training and test data into constants that are attached to the graph
tf_train = tf.constant(x_train)
tf_train_labels = tf.constant(y_train)
tf_val = tf.constant(x_val)
tf_test = tf.constant(x_test)
# As in a neural network the goal is to compute the cross-entropy D(S(w,x), L)
# x, input training data
# w_ij, are elements of the weight matrix
# L, labels or target values of the training data (classification problem)
# S(), is softmax function
# Do the Multinomial Logistic Classification
# step 1.
# Compute y from the linear model y = WX + b, where b is the bias and W is randomly chosen on
# Gaussian distribution and bias is set to zero. The result is called the logit.
# step 2.
# Compute the softmax function S(Y) which gives distribution
# step 3.
# Compute cross-entropy D(S, L) = - Sum_i L_i*log(S_i)
# step 4.
# Compute loss L = 1/N * D(S, L)
# step 5.
# Use gradient-descent to find minimum of loss wrt. w and b by minimizing L(w,b).
# Update your weight and bias until minimum of loss function is reached
# w_i -> w_i - alpha*delta_w L
# b -> b - alpha*delta_b L
# OBS. step 5 is faster optimized if you have transformed the data to have zero mean and equal variance
# mu(x_i) = 0
# sigma(x_i) = sigma(x_j)
# This transformation makes it a well conditioned problem.
# Make a 2-layer Neural network (count number of layers of adaptive weights) with num_columns nodes
# in hidden layer.
# Initialize weights on truncated normal distribution. Initialize biases to zero.
# For every input vector corresponding to one sample we have D features s.t.
# a_j = Sum_i^D w^(1)_ji x_i + w^(1)_j0 , where index j is the number of nodes in the first hidden layer
# and it runs j=1,...,M
# Vectorizing makes the notation more compact
# | --- x_1 --- |
# | --- x_2 --- |
# X = | --- .. --- |
# | --- x_N --- |
# where each x is now a sample vector of dimension (1 x D) and where N is the number of samples.
# Similarly, define a tiling of N weight matrices w,
# | --- w --- |
# | --- w --- |
# W = | --- ..--- |
# | --- w --- |
# where each w is now a matrix of dimension (M x D)
# We now form the tensor product between W and X but we need to transpose X as x.T to get (M x D).(D x 1)
# multiplication,
# | w.(x_1.T) |
# | w.(x_2.T) |
# W.X = | .. |
# | w.(x_N.T) |
# with W.X having dimensions (M*N x 1).
# Additionally, define a tiling of N bias vectors b that each are of dimension (M x 1),
# | b |
# | b |
# B = | .. |
# | b |
# with B having dimensions (M*N x 1).
# Finally, the activation is a (M*N x 1) vector given as A = W.X + B.
# Next, this is passed to an activation function like a simoid and then inserted in second layer of the NN.
# Let Z = sigmoid(A)
# Let C be the activation of the second layer,
# C = W^(2).Z + B^(2)
# where W^(2) is the tiling N second layer weight matrices w^(2) each with dimension (K x M). K is the
# number of outputs in the classification. The dimension of C is (K x N).
# Lastly, apply the sigmoid function to get the predictions
# P = sigmoid( C )
# which has dimensions (K x N) and is as expected an output vector (K x 1) for every N samples in our
# dataset. The output (K x 1)-vector is in a one-hot-encoded form.
# Choose number of nodes > than number of features.
M_nodes = 2*x_train.shape[1]
weights_1_layer = tf.Variable(tf.truncated_normal([num_columns, M_nodes], dtype=np.float64))
biases_1_layer = tf.Variable(tf.zeros([M_nodes], dtype=np.float64))
weights_2_layer = tf.Variable(tf.truncated_normal([M_nodes, num_labels], dtype=np.float64))
biases_2_layer = tf.Variable(tf.zeros([num_labels], dtype=np.float64))
# Logits and loss function.
logits_hidden_1_layer = porto_seguro_insur.linear_model(tf_train, weights_1_layer, biases_1_layer)
# Output unit activations of first layer
a_1_layer = porto_seguro_insur.activation_hidden(logits_hidden_1_layer)
logits_2_layer = porto_seguro_insur.linear_model(a_1_layer, weights_2_layer, biases_2_layer)
switch_var = 0
if switch_var == 1:
loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels,
logits=logits_2_layer))
else:
loss_function = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf_train_labels,
logits=logits_2_layer))
# Find minimum of loss function using gradient-descent.
optimized_weights_and_bias = tf.train.GradientDescentOptimizer(0.5).minimize(loss=loss_function)
# Accuracy variables using the initial values for weights and bias of our linear model.
train_prediction = porto_seguro_insur.activation_out(logits_2_layer)
# Applying optimized weights and bias to validation data
logits_hidden_1_layer_val = porto_seguro_insur.linear_model(tf_val, weights_1_layer, biases_1_layer)
a_1_layer_val = porto_seguro_insur.activation_hidden(logits_hidden_1_layer_val)
logits_2_layer_val = porto_seguro_insur.linear_model(a_1_layer_val, weights_2_layer, biases_2_layer)
val_prediction = porto_seguro_insur.activation_out(logits_2_layer_val)
# Applying optimized weights and bias to test data
logits_hidden_1_layer_test = porto_seguro_insur.linear_model(tf_test, weights_1_layer, biases_1_layer)
a_1_layer_test = porto_seguro_insur.activation_hidden(logits_hidden_1_layer_test)
logits_2_layer_test = porto_seguro_insur.linear_model(a_1_layer_test, weights_2_layer, biases_2_layer)
test_prediction = porto_seguro_insur.activation_out(logits_2_layer_test)
number_of_iterations = 900
# Creating a tensorflow session to effeciently run same computation multiple times using definitions in defined
# dataflow graph.
with tf.Session(graph=graph) as session:
# Ensure that variables are initialized as done in our graph defining the dataflow.
tf.global_variables_initializer().run()
for ite in range(number_of_iterations):
# Compute loss and predictions
loss, predictions = session.run([optimized_weights_and_bias, loss_function, train_prediction])[1:3]
if ite % 100 == 0:
print('Loss at iteration %d: %f' % (ite, loss))
print('Training accuracy: %.1f%%' % porto_seguro_insur.accuracy(predictions, y_train))
print('Test accuracy: %.1f%%' % porto_seguro_insur.accuracy(val_prediction.eval(), y_val))
output = test_prediction.eval()
In [19]:
is_make_prediction = 0
if is_make_prediction:
''' Submission '''
# Submission requires a csv file with id and target columns.
submission = pd.DataFrame({'id': id_df_test, 'target': np.argmax(output, 1)})
submission.to_csv(''.join(['submission_porto_seguro_insur_', porto_seguro_insur.timestamp, '.csv']), index=False)
print(porto_seguro_insur.timestamp)
In [ ]: