Noisy T1 Relaxation Model


In [2]:
%matplotlib inline
import os

working_directory = os.path.pardir

import sys
sys.path.insert(0, working_directory)

from distributions import NormalDistribution
import matplotlib.pyplot as plt
import numpy as np

In [3]:
norm = NormalDistribution()

In [4]:
norm.sample(3)


Out[4]:
array([-2.84380165, -0.59322433,  0.35796748])

In [5]:
plt.plot(norm.distribution.pdf(np.linspace(-3, 3, 100)))
plt.show()



In [6]:
from t1_simulator import *

In [7]:
plt.plot(np.linspace(0, 1, 1000), create_noise_process(np.linspace(0, 1, 1000)))
plt.show()



In [19]:
taus = np.linspace(0, 10, 1000)
noise = create_noise_process(taus, amplitude=1)

In [20]:
plt.plot(taus, calculate_t1_noisy(taus, 1))
plt.axis([0, 10, 0, 1.5])
plt.show()



In [25]:
plt.plot(taus, calculate_t1_noisy(
            taus, 1, create_noise_process(taus, amplitude=0.01))
        )
plt.axis([0, 10, 0, 1.5])


Out[25]:
[0, 10, 0, 1.5]

In [ ]: