Bayesian Inference

Kam is the realest MVP when it comes to Bayesian learning design. I am but a humble learner who translated his code into Python

Imports

Set working directory to be the parent directory of this notebook


In [ ]:
%matplotlib inline
import os

working_directory = os.path.pardir

import sys
sys.path.insert(0, working_directory)

import matplotlib.pyplot as plt
import numpy as np
import logging

Run Kam's Script


In [ ]:
import t1_simulator

In [ ]:
plt.plot(t1_simulator.T1_VALUES, t1_simulator.WEIGHTS[99, :])

In [ ]:
for weight in range(t1_simulator.WEIGHTS.shape[1]):
    print("iteration: %3d Mean: %6.4f Standard Deviation: %6.4f" % (
            weight, 
            (t1_simulator.T1_VALUES * t1_simulator.WEIGHTS[weight,:]).mean(), 
            (t1_simulator.T1_VALUES *t1_simulator.WEIGHTS[weight,:]).std()
        )
    )

In [ ]:
t1_simulator.T1_VALUES * t1_simulator.WEIGHTS[weight,:]

In [ ]: