Wishbone is an algorithm to identify bifurcating developmental trajectories from single cell data. Wishbone can applied to both single cell RNA-seq and mass cytometry datasets. This notebook details the usage of Wishbone for mass cytometry data.
Wishbone can read mass cytometry data from a fcs file. The following code snipped imports the wishbone
package along with other plotting related imports
In [1]:
import wishbone
# Plotting and miscellaneous imports
import os
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import random
%matplotlib inline
A sample mass cytometry fcs file is installed at ~/.wishbone/data/sample_masscyt.fcs
. This is a sample of cells from replicate of the mouse thymus data generated for the Wishbone manuscript. Thus the data is already cleaned and arcsinh
transformed. The data can be loaded using the wishbone.wb.SCData.from_fcs
function.
In [2]:
# Load sample data
scdata = wishbone.wb.SCData.from_fcs(os.path.expanduser('~/.wishbone/data/sample_masscyt.fcs'),
cofactor=None)
This will create an object of the type wishbone.wb.SCData
which is the base class for the analysis. The cofactor
parameter is used for arcsinh
transformation. Since the data is already transformed, cofactor
is set to None
. Typically, this parameter will be set to default (5
) for untransformed data.
A summary of the scdata
object is shown below
In [3]:
scdata
Out[3]:
This shows that the data matrix contains 25000
cells and 13
markers along with the different properties of the wishbone.wb.SCData
class.
Wishbone uses tSNE for visualization and tSNE can be run using the run_tsne
function. Unlike single cell RNA-seq data, tSNE
is run directly on the transformed data for mass cytometry.
In [4]:
scdata.run_tsne()
tSNE results can be visualized by the plot_tsne
function.
In [5]:
fig, ax = scdata.plot_tsne()
Gene expression can be visualized on tSNE maps using the plot_gene_expression
function. The genes
parameter is an string iterable of genes, which are a subset of the expression of column names. The below function plots the expression of DN genes CD44
and CD25
, SP genes CD4
and CD8
In [6]:
fig, ax = scdata.plot_gene_expression(['CD44', 'CD25', 'CD4', 'CD8'])
The below example shows how the user can compare expression of the desired markers. The plot comparing expression of CD8
and CD4
is shown below
In [7]:
fig, ax = wishbone.wb.get_fig()
plt.scatter(scdata.data['CD8'], scdata.data['CD4'],
s=10, edgecolors='none')
plt.xlim([0, 6])
plt.ylim([0, 6])
plt.xlabel('CD8')
plt.ylabel('CD4')
Out[7]:
Wishbone uses diffusion maps, a non-linear dimensionality reduction technique to denoise the data and capture the major axes of variation. Diffusion maps can be determined by using the run_diffusion_map
function and the diffusion components visualized on tSNE maps using plot_diffusion_components
.
In [8]:
# Run diffusion maps
scdata.run_diffusion_map()
In [9]:
fig, ax = scdata.plot_diffusion_components()
Note the component 0 is the trivial component with eigen value 1 and does not encode any information of the data
From the above plots, the first three non-trivial components (Components 1, 2, 3), capture the differences between cell types. This difference in information encoded can be clearly seen by the eigen values associated with these components. Simiar to PCA, the eigen values encode the amount of variance explained in the data and can be visualized usign the plot_diffusion_eigen_vectors
function.
In [10]:
scdata.plot_diffusion_eigen_vectors()
Out[10]:
A clear drop-off in eigen value can be seen after component 3. Thus Wishbone will be run using components 1, 2 and 3
The SCData
object can be saved to a pickle file and loaded using the save
and load
functions.
scdata.save('mouse_thymus_scdata.p')
scdata = wishbone.wb.SCdata.load('mouse_thymus_scdata.p')
wishbone.wb.Wishbone
is the class for running Wishbone. After initialization, Wishbone can be run by specifying the start cell, components to use and number of waypoints to be used. The start cell for this dataset is one of the DN cells based on expression of CD4 and CD8. A sample list of waypoints is also provided as part of the data. The parameter can also be an integer representing the number of waypoints to be sampled from the data.
In [11]:
# Start cell
start_cell = scdata.data.index[(scdata.data['CD4'] < 1) & (scdata.data['CD8'] < 1)][0]
# Waypoints
waypoints = pd.DataFrame.from_csv(os.path.expanduser('~/.wishbone/data/masscyt_waypoints.csv')).iloc[:, 0]
waypoints = list(waypoints)
In [12]:
# Wishbone class
wb = wishbone.wb.Wishbone(scdata)
wb.run_wishbone(start_cell, components_list=[1, 2, 3], num_waypoints=waypoints)
Wishbone
objects contain the SCData
object along with the identified trajectory, branch associations and waypoints
In [13]:
wb
Out[13]:
Wishbone trajectory and branch results can be visualized on tSNE maps using the plot_wishbone_on_tsne
function
In [14]:
fig, ax = wb.plot_wishbone_on_tsne()
Gene expression trends along the Wishbone trajectory can be visualized using the plot_marker_trajectory
function. This function also returns the smoothed trends along with the matplotlib fig, ax handler objects.
In [15]:
vals, fig, ax = wb.plot_marker_trajectory(['CD4', 'CD8', 'CD44'],
smoothing_factor=1.5, show_variance=True);
The marker trends can be visualized as heatmaps in a given trajectory range using the following functions
In [16]:
fig, ax = wb.plot_marker_heatmap(vals)
In [17]:
fig, ax = wb.plot_marker_heatmap(vals, trajectory_range=[0.1, 0.6])
The change in marker trends along the trajectory or derivatives can be visualized using these functions
In [18]:
fig, ax = wb.plot_derivatives(vals)
In [19]:
fig, ax = wb.plot_derivatives(vals, trajectory_range=[0.3, 0.6])
Similar to SCData
objects, Wishbone
objects can also be saved and loaded using save
and load
functions.
Clustering of cells to identify phenopytically distinct populations can be performed using the run_phenograph
function. This function uses Phenograph to cluster the cells. Phenograph was used in the Wishbone manuscript to filter out stromal cells and regulatory T cells from the mouse thymus
In [20]:
scdata.run_phenograph()
The results of Phenograph can be visualized on the tSNE maps using the function plot_phenograph_clusters
and the mean expression of all markers in each cluster can be visualized as a heatmap using the function summarize_phenograph_clusters
In [21]:
fig, ax = scdata.plot_phenograph_clusters()
In [22]:
fig, ax = scdata.summarize_phenograph_clusters()
Finally, a new SCData
with cells belonging to a subset of clusters can be generated using the select_clusters
function
In [23]:
new_scd = scdata.select_clusters([0, 1, 2, 3])
new_scd
Out[23]:
The python implementation of Wishbone does not yet support the specification of a get for start cells. This section provides information about how to choose a cell from a desired section of the tSNE plot
As a first step, change the plotting defaults to show the axes on tSNE maps and use alternative matplotlib
settings to have the ability to zoom in and out
In [30]:
%matplotlib notebook
sns.set_style('whitegrid')
Plot tSNE results on a scatter plot
In [31]:
plt.figure(figsize=[5, 5])
plt.scatter(scdata.tsne['x'], scdata.tsne['y'], s=10, edgecolors='none')
Out[31]:
The gate can be set using the matplotlib.path
functions. Make sure to choose a closed path by specifying the x-y co ordinates of the desired gate.
In [26]:
# The gate should be specified as x1, y1, x2, y2,....xn, yn
gate = matplotlib.path.Path(np.reshape([30, -20, 40, -20, 40, -10, 30, -10, 30, -20], [5, 2]))
The cells within the gate
can be identified and plotted using the following code snippet
In [27]:
gated_cells = scdata.tsne.index[gate.contains_points(scdata.tsne)]
# Plot the gated cells
%matplotlib inline
plt.figure(figsize=[5, 5])
plt.scatter(scdata.tsne['x'], scdata.tsne['y'], s=10, edgecolors='none', color='lightgrey')
plt.scatter(scdata.tsne.ix[gated_cells, 'x'], scdata.tsne.ix[gated_cells, 'y'], s=10, edgecolors='none')
Out[27]:
Randomly select one of the cells from the gated cells as the start cell
In [28]:
start_cell = random.sample(list(gated_cells), 1)[0]
start_cell
Out[28]: