In [1]:
import numpy as np
In [2]:
np.__version__
Out[2]:
Q1. Let x be an arbitrary array. Return True if none of the elements of x is zero. Remind that 0 evaluates to False in python.
In [4]:
x = np.array([1,2,3])
#
x = np.array([1,0,3])
#
Q2. Let x be an arbitrary array. Return True if any of the elements of x is non-zero.
In [5]:
x = np.array([1,0,0])
#
x = np.array([0,0,0])
#
Q3. Predict the result of the following code.
In [8]:
x = np.array([1, 0, np.nan, np.inf])
#print np.isfinite(x)
Q4. Predict the result of the following code.
In [10]:
x = np.array([1, 0, np.nan, np.inf])
#print np.isinf(x)
Q5. Predict the result of the following code.
In [12]:
x = np.array([1, 0, np.nan, np.inf])
#print np.isnan(x)
Q6. Predict the result of the following code.
In [15]:
x = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])
#print np.iscomplex(x)
Q7. Predict the result of the following code.
In [18]:
x = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])
#print np.isreal(x)
Q8. Predict the result of the following code.
In [21]:
#print np.isscalar(3)
#print np.isscalar([3])
#print np.isscalar(True)
Q9. Predict the result of the following code.
In [31]:
#print np.logical_and([True, False], [False, False])
#print np.logical_or([True, False, True], [True, False, False])
#print np.logical_xor([True, False, True], [True, False, False])
#print np.logical_not([True, False, 0, 1])
Q10. Predict the result of the following code.
In [42]:
#print np.allclose([3], [2.999999])
#print np.array_equal([3], [2.999999])
Q11. Write numpy comparison functions such that they return the results as you see.
In [51]:
x = np.array([4, 5])
y = np.array([2, 5])
#
#
#
#
Q12. Predict the result of the following code.
In [50]:
#print np.equal([1, 2], [1, 2.000001])
#print np.isclose([1, 2], [1, 2.000001])
In [ ]: