Trains and Evaluates the IndianPines network using a feed dictionary


In [1]:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
import os
import IndianPinesCNN 
import patch_size
# import IndianPines_data_set as input_data
import Spatial_dataset as input_data

Declare model parameters as external flags


In [2]:
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 4000, 'Number of steps to run trainer.')
flags.DEFINE_integer('conv1', 500, 'Number of filters in convolutional layer 1.')
flags.DEFINE_integer('conv2', 100, 'Number of filters in convolutional layer 2.')
flags.DEFINE_integer('hidden1', 200, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 84, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 100, 'Batch size.  '
                     'Must divide evenly into the dataset sizes.')
# flags.DEFINE_string('train_dir', '1.mat', 'Directory to put the training data.')

In [3]:
learning_rate = 0.01
num_epochs = 20
max_steps = 4000
IMAGE_SIZE = patch_size.patch_size
conv1 = 500
conv2 = 100
fc1 = 200,
fc2 = 84
batch_size = 100
TRAIN_FILES = 8
TEST_FILES = 4
DATA_PATH = os.path.join(os.getcwd(),"Data")

In [4]:
def placeholder_inputs(batch_size):
    """Generate placeholder variables to represent the input tensors.
    These placeholders are used as inputs by the rest of the model building
    code and will be fed from the downloaded data in the .run() loop, below.
    Args:
    batch_size: The batch size will be baked into both placeholders.
    Returns:
    images_placeholder: Images placeholder.
    labels_placeholder: Labels placeholder.
    """
    # Note that the shapes of the placeholders match the shapes of the full
    # image and label tensors, except the first dimension is now batch_size
    # rather than the full size of the train or test data sets.
    images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IndianPinesCNN
                                                           .IMAGE_PIXELS))
    labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
    return images_placeholder, labels_placeholder

In [5]:
def fill_feed_dict(data_set, images_pl, labels_pl):
    """Fills the feed_dict for training the given step.
    A feed_dict takes the form of:
    feed_dict = {
      <placeholder>: <tensor of values to be passed for placeholder>,
      ....
    }
    Args:
    data_set: The set of images and labels, from input_data.read_data_sets()
    images_pl: The images placeholder, from placeholder_inputs().
    labels_pl: The labels placeholder, from placeholder_inputs().
    Returns:
    feed_dict: The feed dictionary mapping from placeholders to values.
    """
    # Create the feed_dict for the placeholders filled with the next
    # `batch size ` examples.
    images_feed, labels_feed = data_set.next_batch(batch_size)
    feed_dict = {
      images_pl: images_feed,
      labels_pl: labels_feed,
    }
    return feed_dict

In [6]:
def do_eval(sess,
            eval_correct,
            images_placeholder,
            labels_placeholder,
            data_set):
    """Runs one evaluation against the full epoch of data.
    Args:
    sess: The session in which the model has been trained.
    eval_correct: The Tensor that returns the number of correct predictions.
    images_placeholder: The images placeholder.
    labels_placeholder: The labels placeholder.
    data_set: The set of images and labels to evaluate, from
      input_data.read_data_sets().
    """
    # And run one epoch of eval.
    true_count = 0  # Counts the number of correct predictions.
    steps_per_epoch = data_set.num_examples // batch_size
    num_examples = steps_per_epoch * batch_size
    for step in xrange(steps_per_epoch):
        feed_dict = fill_feed_dict(data_set,
                                   images_placeholder,
                                   labels_placeholder)
        true_count += sess.run(eval_correct, feed_dict=feed_dict)
    precision = true_count / num_examples
    print('  Num examples: %d  Num correct: %d  Precision @ 1: %0.04f' %
        (num_examples, true_count, precision))

In [7]:
def add_DataSet(first,second):
    temp_image = np.concatenate((first.images,second.images),axis=0)
    temp_labels = np.concatenate((first.labels,second.labels),axis=0)
    temp_image = temp_image.reshape(temp_image.shape[0],IMAGE_SIZE,IMAGE_SIZE,220)
    temp_image = np.transpose(temp_image,(0,3,1,2))
    temp_labels = np.transpose(temp_labels)
    return input_data.DataSet(temp_image,temp_labels)

In [8]:
def run_training():
    """Train MNIST for a number of steps."""
    # Get the sets of images and labels for training, validation, and
    # test on IndianPines.
    
    """Concatenating all the training and test mat files"""
    for i in range(TRAIN_FILES):
        data_sets = input_data.read_data_sets(os.path.join(DATA_PATH, 'Train_'+str(IMAGE_SIZE)+'_'+str(i+1)+'.mat'), 'train')
        if(i==0):
            Training_data = data_sets
            continue
        else:
            Training_data = add_DataSet(Training_data,data_sets)
            
    for i in range(TEST_FILES):
        data_sets = input_data.read_data_sets(os.path.join(DATA_PATH, 'Test_'+str(IMAGE_SIZE)+'_'+str(i+1)+'.mat'),'test')
        if(i==0):
            Test_data = data_sets
            continue
        else:
            Test_data = add_DataSet(Test_data,data_sets)
        
    # Tell TensorFlow that the model will be built into the default Graph.
    with tf.Graph().as_default():
    # Generate placeholders for the images and labels.
        images_placeholder, labels_placeholder = placeholder_inputs(FLAGS.batch_size)

        # Build a Graph that computes predictions from the inference model.
        logits = IndianPinesCNN.inference(images_placeholder,
                                 FLAGS.conv1,
                                 FLAGS.conv2,        
                                 FLAGS.hidden1,
                                 FLAGS.hidden2)

        # Add to the Graph the Ops for loss calculation.
        loss = IndianPinesCNN.loss(logits, labels_placeholder)

        # Add to the Graph the Ops that calculate and apply gradients.
        train_op = IndianPinesCNN.training(loss, FLAGS.learning_rate)

        # Add the Op to compare the logits to the labels during evaluation.
        eval_correct = IndianPinesCNN.evaluation(logits, labels_placeholder)

        # Build the summary operation based on the TF collection of Summaries.
    #    summary_op = tf.merge_all_summaries()

        # Add the variable initializer Op.
        init = tf.initialize_all_variables()

        # Create a saver for writing training checkpoints.
        saver = tf.train.Saver()

        # Create a session for running Ops on the Graph.
        sess = tf.Session()

        # Instantiate a SummaryWriter to output summaries and the Graph.
    #    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

        # And then after everything is built:

        # Run the Op to initialize the variables.
        sess.run(init)

        # Start the training loop.
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()

            # Fill a feed dictionary with the actual set of images and labels
            # for this particular training step.
            feed_dict = fill_feed_dict(Training_data,
                                     images_placeholder,
                                     labels_placeholder)

            # Run one step of the model.  The return values are the activations
            # from the `train_op` (which is discarded) and the `loss` Op.  To
            # inspect the values of your Ops or variables, you may include them
            # in the list passed to sess.run() and the value tensors will be
            # returned in the tuple from the call.
            _, loss_value = sess.run([train_op, loss],
                                   feed_dict=feed_dict)

            duration = time.time() - start_time

            # Write the summaries and print an overview fairly often.
            if step % 50 == 0:
            # Print status to stdout.
                print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
            # Update the events file.
    #             summary_str = sess.run(summary_op, feed_dict=feed_dict)
    #             summary_writer.add_summary(summary_str, step)
    #             summary_writer.flush()

            # Save a checkpoint and evaluate the model periodically.
            if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                saver.save(sess, 'model-spatial-CNN-'+str(IMAGE_SIZE)+'X'+str(IMAGE_SIZE)+'.ckpt', global_step=step)

            # Evaluate against the training set.
                print('Training Data Eval:')
                do_eval(sess,
                        eval_correct,
                        images_placeholder,
                        labels_placeholder,
                        Training_data)
                print('Test Data Eval:')
                do_eval(sess,
                        eval_correct,
                        images_placeholder,
                        labels_placeholder,
                        Test_data)
            # Evaluate against the validation set.
    #             print('Validation Data Eval:')
    #             do_eval(sess,
    #                     eval_correct,
    #                     images_placeholder,
    #                     labels_placeholder,
    #                     data_sets.validation)
    #             # Evaluate against the test set.
    #             print('Test Data Eval:')
    #             do_eval(sess,
    #                     eval_correct,
    #                     images_placeholder,
    #                     labels_placeholder,
    #                     data_sets.test)

In [9]:
run_training()


Tensor("conv_1/Conv2D:0", shape=(100, 9, 9, 500), dtype=float32)
Tensor("h_conv2/h_conv2:0", shape=(100, 3, 3, 100), dtype=float32)
Tensor("h_pool2:0", shape=(100, 2, 2, 100), dtype=float32)
Tensor("Reshape:0", shape=(100, 400), dtype=float32)
Step 0: loss = 2.79 (0.417 sec)
Step 50: loss = 2.73 (0.096 sec)
Step 100: loss = 2.57 (0.084 sec)
Step 150: loss = 2.14 (0.085 sec)
Step 200: loss = 1.84 (0.096 sec)
Step 250: loss = 1.58 (0.084 sec)
Step 300: loss = 1.28 (0.084 sec)
Step 350: loss = 1.21 (0.085 sec)
Step 400: loss = 0.84 (0.085 sec)
Step 450: loss = 1.04 (0.084 sec)
Step 500: loss = 0.75 (0.084 sec)
Step 550: loss = 0.83 (0.085 sec)
Step 600: loss = 0.73 (0.084 sec)
Step 650: loss = 0.72 (0.085 sec)
Step 700: loss = 0.72 (0.085 sec)
Step 750: loss = 0.61 (0.084 sec)
Step 800: loss = 0.56 (0.347 sec)
Step 850: loss = 0.59 (0.084 sec)
Step 900: loss = 0.51 (0.084 sec)
Step 950: loss = 0.51 (0.084 sec)
Training Data Eval:
  Num examples: 3200  Num correct: 2558  Precision @ 1: 0.7994
Test Data Eval:
  Num examples: 1600  Num correct: 851  Precision @ 1: 0.5319
Step 1000: loss = 0.50 (0.088 sec)
Step 1050: loss = 0.57 (0.080 sec)
Step 1100: loss = 0.52 (0.079 sec)
Step 1150: loss = 0.45 (0.080 sec)
Step 1200: loss = 0.43 (0.080 sec)
Step 1250: loss = 0.47 (0.080 sec)
Step 1300: loss = 0.46 (0.080 sec)
Step 1350: loss = 0.32 (0.080 sec)
Step 1400: loss = 0.34 (0.081 sec)
Step 1450: loss = 0.45 (0.080 sec)
Step 1500: loss = 0.35 (0.080 sec)
Step 1550: loss = 0.37 (0.079 sec)
Step 1600: loss = 0.30 (0.339 sec)
Step 1650: loss = 0.46 (0.080 sec)
Step 1700: loss = 0.29 (0.080 sec)
Step 1750: loss = 0.29 (0.080 sec)
Step 1800: loss = 0.28 (0.080 sec)
Step 1850: loss = 0.23 (0.080 sec)
Step 1900: loss = 0.34 (0.079 sec)
Step 1950: loss = 0.26 (0.080 sec)
Training Data Eval:
  Num examples: 3200  Num correct: 2982  Precision @ 1: 0.9319
Test Data Eval:
  Num examples: 1600  Num correct: 1183  Precision @ 1: 0.7394
Step 2000: loss = 0.24 (0.087 sec)
Step 2050: loss = 0.20 (0.079 sec)
Step 2100: loss = 0.32 (0.080 sec)
Step 2150: loss = 0.26 (0.080 sec)
Step 2200: loss = 0.32 (0.080 sec)
Step 2250: loss = 0.14 (0.080 sec)
Step 2300: loss = 0.16 (0.080 sec)
Step 2350: loss = 0.16 (0.080 sec)
Step 2400: loss = 0.24 (0.340 sec)
Step 2450: loss = 0.16 (0.080 sec)
Step 2500: loss = 0.15 (0.080 sec)
Step 2550: loss = 0.19 (0.079 sec)
Step 2600: loss = 0.30 (0.080 sec)
Step 2650: loss = 0.13 (0.080 sec)
Step 2700: loss = 0.24 (0.080 sec)
Step 2750: loss = 0.13 (0.080 sec)
Step 2800: loss = 0.17 (0.081 sec)
Step 2850: loss = 0.14 (0.080 sec)
Step 2900: loss = 0.14 (0.080 sec)
Step 2950: loss = 0.09 (0.080 sec)
Training Data Eval:
  Num examples: 3200  Num correct: 3095  Precision @ 1: 0.9672
Test Data Eval:
  Num examples: 1600  Num correct: 1356  Precision @ 1: 0.8475
Step 3000: loss = 0.08 (0.090 sec)
Step 3050: loss = 0.17 (0.080 sec)
Step 3100: loss = 0.13 (0.080 sec)
Step 3150: loss = 0.15 (0.080 sec)
Step 3200: loss = 0.13 (0.341 sec)
Step 3250: loss = 0.10 (0.080 sec)
Step 3300: loss = 0.05 (0.080 sec)
Step 3350: loss = 0.12 (0.084 sec)
Step 3400: loss = 0.10 (0.080 sec)
Step 3450: loss = 0.09 (0.080 sec)
Step 3500: loss = 0.11 (0.080 sec)
Step 3550: loss = 0.06 (0.080 sec)
Step 3600: loss = 0.08 (0.080 sec)
Step 3650: loss = 0.13 (0.080 sec)
Step 3700: loss = 0.09 (0.082 sec)
Step 3750: loss = 0.04 (0.087 sec)
Step 3800: loss = 0.12 (0.082 sec)
Step 3850: loss = 0.08 (0.087 sec)
Step 3900: loss = 0.11 (0.079 sec)
Step 3950: loss = 0.08 (0.086 sec)
Training Data Eval:
  Num examples: 3200  Num correct: 3144  Precision @ 1: 0.9825
Test Data Eval:
  Num examples: 1600  Num correct: 1408  Precision @ 1: 0.8800

In [ ]: