In [1]:
using DataFrames,JWAS,JWAS.Datasets
missing values are denoted as "NA"
In [2]:
MTData = Datasets.dataset("testMT","MTData.txt");
genofile = Datasets.dataset("testMT","genotype.txt");
In [3]:
;cat $MTData
In [4]:
df = readtable(MTData, separator = ' ')
Out[4]:
In [5]:
;cat $genofile
In [6]:
R0=[1.0 0.5
0.5 2.0];
In [7]:
models = "y1 = intercept + trt;
y2 = intercept + trt"
mme = build_model(models,R0,df=10);
In [8]:
G=[1.0 0.5
0.5 2.0];
add_markers(mme,genofile,G,separator=',',header=true);
In [9]:
Pi=Dict([1.0; 1.0]=>0.25,[1.0; 0.0]=>0.25,[0.0; 1.0]=>0.25,[0.0; 0.0]=>0.25)
out = runMCMC(mme,df,Pi=Pi,methods="BayesC",missing_phenotypes=true,
chain_length=5000,output_samples_frequency=100);
In [15]:
Pi=Dict([1.0; 1.0]=>0.25,[1.0; 0.0]=>0.25,[0.0; 1.0]=>0.25,[0.0; 0.0]=>0.25)
out = runMCMC(mme,df,Pi=Pi,methods="BayesC",constraint=true,
missing_phenotypes=true,chain_length=1000,printout_frequency=1000);
In [16]:
out = runMCMC(mme,df,Pi=Pi,methods="BayesC0",missing_phenotypes=true,
chain_length=5000,update_priors_frequency=1000);