In [1]:
from keras.layers import Convolution2D ,MaxPooling2D,Flatten
from keras.layers.core import Dense, Dropout, Activation
from sklearn.cross_validation import train_test_split
from keras.callbacks import History,Callback
from sklearn.metrics import classification_report
from sklearn.cross_validation import StratifiedKFold ,cross_val_score
from keras.models import model_from_config
from keras.models import Sequential
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.regularizers import l2
from keras import backend as K
import theano.tensor as T
import theano
import keras
import pickle


Using Theano backend.
Using gpu device 0: GeForce 940M (CNMeM is disabled, CuDNN not available)
C:\Users\Back_jud\Anaconda2\lib\site-packages\theano\tensor\signal\downsample.py:6: UserWarning:

downsample module has been moved to the theano.tensor.signal.pool module.


In [2]:
# binary category to label 
def cat2lab (x):
    '''only for binary category'''
    return np.array([0 if s[0] else 1 for s in x])

Loading data from pickle and formatting


In [3]:
a = open('d://labels_new.p')
b = open('d://images_new.p')
labels = np.array(pickle.load(a))
imgs = np.array(pickle.load(b))
imgsr = imgs /255
labels = np_utils.to_categorical(labels,nb_classes=2)

In [4]:
orimgs =[]
for img in imgsr:
    orimgs.append(np.reshape(img,(50,50))) 
orimgs = np.array(orimgs)

Split data


In [5]:
x_tr,x_te,y_tr,y_te = train_test_split(orimgs,labels,test_size= 0.2,random_state= 123)

In [6]:
x_tr1,x_te1,y_tr1,y_te1 = train_test_split(imgsr,labels,test_size= 0.2,random_state= 123)

Trial1.Simple neuron

need to add regularizer L2 , activity L2 for further use


In [7]:
model1 = Sequential()
model1.add(Dense(2500, input_dim=2500,init ='uniform'))
model1.add(Activation('relu'))
model1.add(Dense(2, activation="softmax"))
model1.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01,decay= 1e-6,momentum=0.1,nesterov=True))

In [8]:
%time hist1 = model1.fit(x_tr1, np.array(y_tr1), nb_epoch=300,validation_split=0.2 ,batch_size=50,show_accuracy=True,verbose=0)


Wall time: 33.4 s

In [9]:
plt.plot(hist1.history['acc'],label='acc')
plt.plot(hist1.history['loss'],label='loss')
plt.plot(hist1.history['val_acc'],'--',label='val_acc')
plt.plot(hist1.history['val_loss'],'--',label='val_loss')
plt.grid('off')
plt.legend()


Out[9]:
<matplotlib.legend.Legend at 0x2c9f9e80>

In [10]:
model1.summary()


--------------------------------------------------------------------------------
Initial input shape: (None, 2500)
--------------------------------------------------------------------------------
Layer (name)                  Output Shape                  Param #             
--------------------------------------------------------------------------------
Dense (dense)                 (None, 2500)                  6252500             
Activation (activation)       (None, 2500)                  0                   
Dense (dense)                 (None, 2)                     5002                
--------------------------------------------------------------------------------
Total params: 6257502
--------------------------------------------------------------------------------

In [11]:
model1.evaluate(x_te1,y_te1,batch_size=50,show_accuracy=True)


29/29 [==============================] - 0s
Out[11]:
[0.69461101293563843, 0.75862068965517238]

In [12]:
y_pred1 = model1.predict_classes(x_te1,20)
y_pred1


29/29 [==============================] - 0s     
Out[12]:
array([1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,
       1, 0, 1, 1, 1, 1], dtype=int64)

In [13]:
y_ten1 = cat2lab(y_te1)
y_ten1


Out[13]:
array([0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1,
       1, 0, 1, 1, 1, 1])

In [14]:
print(classification_report(y_ten1,y_pred1))


             precision    recall  f1-score   support

          0       0.67      0.73      0.70        11
          1       0.82      0.78      0.80        18

avg / total       0.76      0.76      0.76        29


In [15]:
for i in model1.get_weights():
    print(np.shape(i))


(2500L, 2500L)
(2500L,)
(2500L, 2L)
(2L,)

Trial2. CNN


In [16]:
#reshape to shape (1,50,50) for CNN
imgs2d= []
for img in imgsr:
    imgs2d.append(np.reshape(img,(1,50,50)))
imgs2d = np.array(imgs2d)

In [17]:
x_tr2,x_te2,y_tr2,y_te2 = train_test_split(imgs2d,labels,test_size= 0.2,random_state= 123)

what about cross validation to CNN


In [18]:
model2 = Sequential()
model2.add(Convolution2D(15,10, 10, border_mode='same', input_shape=(1, 50, 50)))
model2.add(Activation('relu'))
# model2.add(Convolution2D(50, 5, 5,init='uniform'))
# model2.add(Activation('relu'))
model2.add(MaxPooling2D(pool_size=(2, 2)))
model2.add(Dropout(0.5))

model2.add(Convolution2D(10, 10, 10,init='uniform' ,border_mode='same'))
model2.add(Activation('relu'))
# model2.add(Convolution2D(100, 5, 5,init='uniform'))
# model2.add(Activation('relu'))
model2.add(MaxPooling2D(pool_size=(2, 2)))
model2.add(Dropout(0.3))

model2.add(Flatten())
model2.add(Dense(1250,init='uniform'))
model2.add(Activation('relu'))
model2.add(Dense(2,activation='softmax'))
model2.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01,decay=1e-6,
                                                              momentum=0.5,
                                                              nesterov=True))

In [19]:
%time hist2 = model2.fit(x_tr2, y_tr2, nb_epoch=300 , batch_size=50 ,validation_split=0.2, show_accuracy=True ,shuffle=True)


Train on 90 samples, validate on 23 samples
Epoch 1/300
90/90 [==============================] - 1s - loss: 1.0399 - acc: 0.4667 - val_loss: 0.7806 - val_acc: 0.6087
Epoch 2/300
90/90 [==============================] - 1s - loss: 1.3866 - acc: 0.4778 - val_loss: 0.6906 - val_acc: 0.6522
Epoch 3/300
90/90 [==============================] - 1s - loss: 0.6967 - acc: 0.5556 - val_loss: 0.6911 - val_acc: 0.4348
Epoch 4/300
90/90 [==============================] - 1s - loss: 0.6830 - acc: 0.5333 - val_loss: 0.6906 - val_acc: 0.4783
Epoch 5/300
90/90 [==============================] - 1s - loss: 0.6687 - acc: 0.6111 - val_loss: 0.6908 - val_acc: 0.4783
Epoch 6/300
90/90 [==============================] - 1s - loss: 0.6750 - acc: 0.5444 - val_loss: 0.6916 - val_acc: 0.4783
Epoch 7/300
90/90 [==============================] - 0s - loss: 0.6753 - acc: 0.5667 - val_loss: 0.6898 - val_acc: 0.5217
Epoch 8/300
90/90 [==============================] - 0s - loss: 0.6466 - acc: 0.6222 - val_loss: 0.6854 - val_acc: 0.6957
Epoch 9/300
90/90 [==============================] - 0s - loss: 0.6499 - acc: 0.5889 - val_loss: 0.6777 - val_acc: 0.7391
Epoch 10/300
90/90 [==============================] - 0s - loss: 0.6237 - acc: 0.7111 - val_loss: 0.6681 - val_acc: 0.7826
Epoch 11/300
90/90 [==============================] - 0s - loss: 0.6371 - acc: 0.6333 - val_loss: 0.6642 - val_acc: 0.7826
Epoch 12/300
90/90 [==============================] - 0s - loss: 0.6597 - acc: 0.6222 - val_loss: 0.6525 - val_acc: 0.7826
Epoch 13/300
90/90 [==============================] - 1s - loss: 0.6056 - acc: 0.7556 - val_loss: 0.6309 - val_acc: 0.7826
Epoch 14/300
90/90 [==============================] - 1s - loss: 0.6026 - acc: 0.7222 - val_loss: 0.6152 - val_acc: 0.7826
Epoch 15/300
90/90 [==============================] - 1s - loss: 0.5782 - acc: 0.7778 - val_loss: 0.5809 - val_acc: 0.7391
Epoch 16/300
90/90 [==============================] - 1s - loss: 0.5816 - acc: 0.6667 - val_loss: 0.5601 - val_acc: 0.6957
Epoch 17/300
90/90 [==============================] - 1s - loss: 0.5470 - acc: 0.7667 - val_loss: 0.5020 - val_acc: 0.7826
Epoch 18/300
90/90 [==============================] - 1s - loss: 0.5153 - acc: 0.8222 - val_loss: 0.4770 - val_acc: 0.9130
Epoch 19/300
90/90 [==============================] - 1s - loss: 0.5370 - acc: 0.6889 - val_loss: 0.4638 - val_acc: 0.9130
Epoch 20/300
90/90 [==============================] - 1s - loss: 0.4568 - acc: 0.8333 - val_loss: 0.4466 - val_acc: 0.7826
Epoch 21/300
90/90 [==============================] - 1s - loss: 0.4291 - acc: 0.8556 - val_loss: 0.3728 - val_acc: 0.7826
Epoch 22/300
90/90 [==============================] - 0s - loss: 0.4393 - acc: 0.8111 - val_loss: 1.0505 - val_acc: 0.3913
Epoch 23/300
90/90 [==============================] - 0s - loss: 0.9342 - acc: 0.5556 - val_loss: 0.5069 - val_acc: 0.7826
Epoch 24/300
90/90 [==============================] - 1s - loss: 0.4402 - acc: 0.8889 - val_loss: 0.4452 - val_acc: 0.9565
Epoch 25/300
90/90 [==============================] - 1s - loss: 0.3901 - acc: 0.9000 - val_loss: 0.3840 - val_acc: 0.8261
Epoch 26/300
90/90 [==============================] - 0s - loss: 0.3522 - acc: 0.8889 - val_loss: 0.3237 - val_acc: 0.8696
Epoch 27/300
90/90 [==============================] - 1s - loss: 0.3036 - acc: 0.9222 - val_loss: 0.3891 - val_acc: 0.8261
Epoch 28/300
90/90 [==============================] - 1s - loss: 0.3815 - acc: 0.8333 - val_loss: 0.3657 - val_acc: 0.8261
Epoch 29/300
90/90 [==============================] - 1s - loss: 0.3303 - acc: 0.8667 - val_loss: 0.2777 - val_acc: 0.8696
Epoch 30/300
90/90 [==============================] - 1s - loss: 0.2911 - acc: 0.9111 - val_loss: 0.2709 - val_acc: 0.8261
Epoch 31/300
90/90 [==============================] - 0s - loss: 0.3467 - acc: 0.8556 - val_loss: 0.5713 - val_acc: 0.6957
Epoch 32/300
90/90 [==============================] - 0s - loss: 0.8462 - acc: 0.5778 - val_loss: 0.3907 - val_acc: 1.0000
Epoch 33/300
90/90 [==============================] - 1s - loss: 0.3429 - acc: 0.9333 - val_loss: 0.3468 - val_acc: 1.0000
Epoch 34/300
90/90 [==============================] - 1s - loss: 0.3139 - acc: 0.9111 - val_loss: 0.2882 - val_acc: 0.9130
Epoch 35/300
90/90 [==============================] - 1s - loss: 0.3005 - acc: 0.9222 - val_loss: 0.2923 - val_acc: 0.8696
Epoch 36/300
90/90 [==============================] - 1s - loss: 0.2867 - acc: 0.8778 - val_loss: 0.2827 - val_acc: 0.8696
Epoch 37/300
90/90 [==============================] - 1s - loss: 0.2752 - acc: 0.8778 - val_loss: 0.2134 - val_acc: 0.9565
Epoch 38/300
90/90 [==============================] - 1s - loss: 0.2586 - acc: 0.9000 - val_loss: 0.2611 - val_acc: 0.8696
Epoch 39/300
90/90 [==============================] - 0s - loss: 0.2219 - acc: 0.9333 - val_loss: 0.2027 - val_acc: 0.9565
Epoch 40/300
90/90 [==============================] - 0s - loss: 0.2230 - acc: 0.9000 - val_loss: 0.1872 - val_acc: 0.9565
Epoch 41/300
90/90 [==============================] - 1s - loss: 0.1963 - acc: 0.9333 - val_loss: 0.2668 - val_acc: 0.8261
Epoch 42/300
90/90 [==============================] - 1s - loss: 0.2910 - acc: 0.8667 - val_loss: 0.3676 - val_acc: 0.7826
Epoch 43/300
90/90 [==============================] - 1s - loss: 0.3219 - acc: 0.8333 - val_loss: 0.2622 - val_acc: 0.8261
Epoch 44/300
90/90 [==============================] - 1s - loss: 0.2513 - acc: 0.8889 - val_loss: 0.2616 - val_acc: 0.8696
Epoch 45/300
90/90 [==============================] - 1s - loss: 0.2036 - acc: 0.9000 - val_loss: 0.1765 - val_acc: 0.9565
Epoch 46/300
90/90 [==============================] - 0s - loss: 0.1907 - acc: 0.9333 - val_loss: 0.1622 - val_acc: 1.0000
Epoch 47/300
90/90 [==============================] - 0s - loss: 0.2019 - acc: 0.9111 - val_loss: 0.4110 - val_acc: 0.7826
Epoch 48/300
90/90 [==============================] - 0s - loss: 0.3092 - acc: 0.8444 - val_loss: 0.2420 - val_acc: 0.8696
Epoch 49/300
90/90 [==============================] - 0s - loss: 0.1941 - acc: 0.9111 - val_loss: 0.1727 - val_acc: 0.9565
Epoch 50/300
90/90 [==============================] - 1s - loss: 0.1590 - acc: 0.9556 - val_loss: 0.1548 - val_acc: 0.9565
Epoch 51/300
90/90 [==============================] - 0s - loss: 0.1482 - acc: 0.9444 - val_loss: 0.2383 - val_acc: 0.8696
Epoch 52/300
90/90 [==============================] - 0s - loss: 0.1574 - acc: 0.9333 - val_loss: 0.1787 - val_acc: 0.8696
Epoch 53/300
90/90 [==============================] - 1s - loss: 0.1303 - acc: 0.9778 - val_loss: 0.1769 - val_acc: 0.8696
Epoch 54/300
90/90 [==============================] - 0s - loss: 0.1911 - acc: 0.9444 - val_loss: 0.2677 - val_acc: 0.8696
Epoch 55/300
90/90 [==============================] - 0s - loss: 0.1820 - acc: 0.9556 - val_loss: 0.1796 - val_acc: 0.8696
Epoch 56/300
90/90 [==============================] - 1s - loss: 0.1631 - acc: 0.9333 - val_loss: 0.1271 - val_acc: 1.0000
Epoch 57/300
90/90 [==============================] - 0s - loss: 0.2230 - acc: 0.8778 - val_loss: 0.2511 - val_acc: 0.8696
Epoch 58/300
90/90 [==============================] - 1s - loss: 0.3554 - acc: 0.8000 - val_loss: 0.1581 - val_acc: 0.9565
Epoch 59/300
90/90 [==============================] - 0s - loss: 0.1889 - acc: 0.9222 - val_loss: 0.1505 - val_acc: 0.9565
Epoch 60/300
90/90 [==============================] - 0s - loss: 0.1425 - acc: 0.9444 - val_loss: 0.1605 - val_acc: 0.9130
Epoch 61/300
90/90 [==============================] - 0s - loss: 0.1091 - acc: 0.9667 - val_loss: 0.1666 - val_acc: 0.9130
Epoch 62/300
90/90 [==============================] - 0s - loss: 0.1312 - acc: 0.9667 - val_loss: 0.1943 - val_acc: 0.8696
Epoch 63/300
90/90 [==============================] - 0s - loss: 0.1101 - acc: 0.9667 - val_loss: 0.1231 - val_acc: 0.9565
Epoch 64/300
90/90 [==============================] - 0s - loss: 0.0906 - acc: 0.9667 - val_loss: 0.1399 - val_acc: 0.9130
Epoch 65/300
90/90 [==============================] - 0s - loss: 0.1493 - acc: 0.9333 - val_loss: 0.2983 - val_acc: 0.8261
Epoch 66/300
90/90 [==============================] - 0s - loss: 0.1549 - acc: 0.9556 - val_loss: 0.1205 - val_acc: 0.9565
Epoch 67/300
90/90 [==============================] - 0s - loss: 0.1105 - acc: 0.9667 - val_loss: 0.2095 - val_acc: 0.8696
Epoch 68/300
90/90 [==============================] - 1s - loss: 0.0899 - acc: 1.0000 - val_loss: 0.1466 - val_acc: 0.9130
Epoch 69/300
90/90 [==============================] - 1s - loss: 0.1203 - acc: 0.9667 - val_loss: 0.2227 - val_acc: 0.8696
Epoch 70/300
90/90 [==============================] - 1s - loss: 0.0937 - acc: 0.9778 - val_loss: 0.1123 - val_acc: 0.9130
Epoch 71/300
90/90 [==============================] - 1s - loss: 0.0782 - acc: 0.9889 - val_loss: 0.1077 - val_acc: 0.9565
Epoch 72/300
90/90 [==============================] - 1s - loss: 0.0846 - acc: 0.9667 - val_loss: 0.1087 - val_acc: 0.9565
Epoch 73/300
90/90 [==============================] - 1s - loss: 0.1006 - acc: 0.9556 - val_loss: 0.1115 - val_acc: 0.9565
Epoch 74/300
90/90 [==============================] - 0s - loss: 0.0964 - acc: 0.9778 - val_loss: 0.1320 - val_acc: 0.9130
Epoch 75/300
90/90 [==============================] - 1s - loss: 0.0507 - acc: 1.0000 - val_loss: 0.1225 - val_acc: 0.9130
Epoch 76/300
90/90 [==============================] - 0s - loss: 0.0694 - acc: 0.9889 - val_loss: 0.2367 - val_acc: 0.8696
Epoch 77/300
90/90 [==============================] - 0s - loss: 0.1103 - acc: 0.9556 - val_loss: 0.1502 - val_acc: 0.9130
Epoch 78/300
90/90 [==============================] - 0s - loss: 0.0589 - acc: 0.9889 - val_loss: 0.0920 - val_acc: 0.9565
Epoch 79/300
90/90 [==============================] - 0s - loss: 0.0941 - acc: 0.9667 - val_loss: 0.1236 - val_acc: 0.9130
Epoch 80/300
90/90 [==============================] - 0s - loss: 0.1139 - acc: 0.9667 - val_loss: 0.2630 - val_acc: 0.9130
Epoch 81/300
90/90 [==============================] - 0s - loss: 0.3434 - acc: 0.8111 - val_loss: 0.0892 - val_acc: 1.0000
Epoch 82/300
90/90 [==============================] - 0s - loss: 0.1221 - acc: 0.9556 - val_loss: 0.1174 - val_acc: 0.9130
Epoch 83/300
90/90 [==============================] - 0s - loss: 0.0974 - acc: 0.9667 - val_loss: 0.1204 - val_acc: 0.9130
Epoch 84/300
90/90 [==============================] - 1s - loss: 0.0585 - acc: 0.9889 - val_loss: 0.1238 - val_acc: 0.9130
Epoch 85/300
90/90 [==============================] - 1s - loss: 0.0637 - acc: 1.0000 - val_loss: 0.0910 - val_acc: 1.0000
Epoch 86/300
90/90 [==============================] - 1s - loss: 0.0916 - acc: 0.9667 - val_loss: 0.1088 - val_acc: 0.9565
Epoch 87/300
90/90 [==============================] - 0s - loss: 0.0800 - acc: 0.9778 - val_loss: 0.1313 - val_acc: 0.9130
Epoch 88/300
90/90 [==============================] - 1s - loss: 0.0471 - acc: 1.0000 - val_loss: 0.1224 - val_acc: 0.9130
Epoch 89/300
90/90 [==============================] - 1s - loss: 0.0530 - acc: 1.0000 - val_loss: 0.1650 - val_acc: 0.9130
Epoch 90/300
90/90 [==============================] - 0s - loss: 0.0699 - acc: 0.9778 - val_loss: 0.0840 - val_acc: 1.0000
Epoch 91/300
90/90 [==============================] - 1s - loss: 0.0825 - acc: 0.9667 - val_loss: 0.0979 - val_acc: 0.9565
Epoch 92/300
90/90 [==============================] - 0s - loss: 0.0903 - acc: 0.9778 - val_loss: 0.1078 - val_acc: 0.9565
Epoch 93/300
90/90 [==============================] - 0s - loss: 0.1183 - acc: 0.9444 - val_loss: 0.1363 - val_acc: 0.9130
Epoch 94/300
90/90 [==============================] - 0s - loss: 0.0533 - acc: 0.9889 - val_loss: 0.1034 - val_acc: 0.9565
Epoch 95/300
90/90 [==============================] - 0s - loss: 0.0429 - acc: 1.0000 - val_loss: 0.1242 - val_acc: 0.9130
Epoch 96/300
90/90 [==============================] - 0s - loss: 0.0636 - acc: 0.9778 - val_loss: 0.0809 - val_acc: 0.9565
Epoch 97/300
90/90 [==============================] - 0s - loss: 0.0360 - acc: 1.0000 - val_loss: 0.1855 - val_acc: 0.9130
Epoch 98/300
90/90 [==============================] - 0s - loss: 0.0463 - acc: 0.9889 - val_loss: 0.0901 - val_acc: 0.9565
Epoch 99/300
90/90 [==============================] - 0s - loss: 0.0439 - acc: 1.0000 - val_loss: 0.0723 - val_acc: 1.0000
Epoch 100/300
90/90 [==============================] - 0s - loss: 0.0435 - acc: 0.9889 - val_loss: 0.1123 - val_acc: 0.9130
Epoch 101/300
90/90 [==============================] - 0s - loss: 0.0491 - acc: 0.9889 - val_loss: 0.0809 - val_acc: 1.0000
Epoch 102/300
90/90 [==============================] - 0s - loss: 0.0585 - acc: 0.9667 - val_loss: 0.1034 - val_acc: 0.9130
Epoch 103/300
90/90 [==============================] - 0s - loss: 0.0326 - acc: 1.0000 - val_loss: 0.0889 - val_acc: 0.9565
Epoch 104/300
90/90 [==============================] - 0s - loss: 0.0565 - acc: 0.9778 - val_loss: 0.0983 - val_acc: 0.9565
Epoch 105/300
90/90 [==============================] - 0s - loss: 0.0190 - acc: 1.0000 - val_loss: 0.1080 - val_acc: 0.9565
Epoch 106/300
90/90 [==============================] - 0s - loss: 0.0575 - acc: 0.9889 - val_loss: 0.2302 - val_acc: 0.8696
Epoch 107/300
90/90 [==============================] - 0s - loss: 0.0728 - acc: 0.9667 - val_loss: 0.0974 - val_acc: 0.9565
Epoch 108/300
90/90 [==============================] - 0s - loss: 0.0343 - acc: 0.9778 - val_loss: 0.1325 - val_acc: 0.9130
Epoch 109/300
90/90 [==============================] - 1s - loss: 0.0325 - acc: 0.9889 - val_loss: 0.1171 - val_acc: 0.9130
Epoch 110/300
90/90 [==============================] - 0s - loss: 0.0277 - acc: 0.9889 - val_loss: 0.1497 - val_acc: 0.9130
Epoch 111/300
90/90 [==============================] - 0s - loss: 0.0193 - acc: 1.0000 - val_loss: 0.1124 - val_acc: 0.9130
Epoch 112/300
90/90 [==============================] - 0s - loss: 0.0293 - acc: 1.0000 - val_loss: 0.0956 - val_acc: 0.9565
Epoch 113/300
90/90 [==============================] - 0s - loss: 0.0289 - acc: 1.0000 - val_loss: 0.0892 - val_acc: 0.9565
Epoch 114/300
90/90 [==============================] - 1s - loss: 0.0594 - acc: 0.9778 - val_loss: 0.0804 - val_acc: 0.9565
Epoch 115/300
90/90 [==============================] - 1s - loss: 0.0236 - acc: 1.0000 - val_loss: 0.1528 - val_acc: 0.9130
Epoch 116/300
90/90 [==============================] - 1s - loss: 0.0894 - acc: 0.9778 - val_loss: 0.1723 - val_acc: 0.9130
Epoch 117/300
90/90 [==============================] - 0s - loss: 0.0273 - acc: 0.9889 - val_loss: 0.0988 - val_acc: 0.9130
Epoch 118/300
90/90 [==============================] - 1s - loss: 0.0370 - acc: 1.0000 - val_loss: 0.1103 - val_acc: 0.9130
Epoch 119/300
90/90 [==============================] - 1s - loss: 0.0445 - acc: 0.9889 - val_loss: 0.0650 - val_acc: 0.9565
Epoch 120/300
90/90 [==============================] - 1s - loss: 0.0491 - acc: 0.9889 - val_loss: 0.2139 - val_acc: 0.9130
Epoch 121/300
90/90 [==============================] - 1s - loss: 0.0355 - acc: 0.9889 - val_loss: 0.1004 - val_acc: 0.9565
Epoch 122/300
90/90 [==============================] - 1s - loss: 0.0433 - acc: 0.9778 - val_loss: 0.2555 - val_acc: 0.8696
Epoch 123/300
90/90 [==============================] - 0s - loss: 0.0360 - acc: 0.9889 - val_loss: 0.1175 - val_acc: 0.9565
Epoch 124/300
90/90 [==============================] - 0s - loss: 0.0296 - acc: 0.9889 - val_loss: 0.1121 - val_acc: 0.9565
Epoch 125/300
90/90 [==============================] - 1s - loss: 0.0352 - acc: 0.9889 - val_loss: 0.1950 - val_acc: 0.9130
Epoch 126/300
90/90 [==============================] - 1s - loss: 0.0262 - acc: 1.0000 - val_loss: 0.1009 - val_acc: 0.9565
Epoch 127/300
90/90 [==============================] - 0s - loss: 0.0348 - acc: 0.9889 - val_loss: 0.0796 - val_acc: 0.9565
Epoch 128/300
90/90 [==============================] - 0s - loss: 0.1109 - acc: 0.9444 - val_loss: 0.0895 - val_acc: 0.9565
Epoch 129/300
90/90 [==============================] - 0s - loss: 0.0468 - acc: 0.9889 - val_loss: 0.1531 - val_acc: 0.9130
Epoch 130/300
90/90 [==============================] - 1s - loss: 0.0248 - acc: 1.0000 - val_loss: 0.0972 - val_acc: 0.9565
Epoch 131/300
90/90 [==============================] - 1s - loss: 0.0405 - acc: 0.9889 - val_loss: 0.1586 - val_acc: 0.9130
Epoch 132/300
90/90 [==============================] - 1s - loss: 0.0304 - acc: 0.9889 - val_loss: 0.0720 - val_acc: 1.0000
Epoch 133/300
90/90 [==============================] - 0s - loss: 0.0336 - acc: 1.0000 - val_loss: 0.1022 - val_acc: 0.9130
Epoch 134/300
90/90 [==============================] - 1s - loss: 0.0211 - acc: 1.0000 - val_loss: 0.1164 - val_acc: 0.9130
Epoch 135/300
90/90 [==============================] - 1s - loss: 0.0096 - acc: 1.0000 - val_loss: 0.1074 - val_acc: 0.9130
Epoch 136/300
90/90 [==============================] - 0s - loss: 0.0300 - acc: 1.0000 - val_loss: 0.1440 - val_acc: 0.9130
Epoch 137/300
90/90 [==============================] - 0s - loss: 0.0547 - acc: 0.9778 - val_loss: 0.1235 - val_acc: 0.9130
Epoch 138/300
90/90 [==============================] - 1s - loss: 0.0297 - acc: 1.0000 - val_loss: 0.1186 - val_acc: 0.9130
Epoch 139/300
90/90 [==============================] - 1s - loss: 0.0229 - acc: 1.0000 - val_loss: 0.1132 - val_acc: 0.9130
Epoch 140/300
90/90 [==============================] - 1s - loss: 0.0335 - acc: 0.9889 - val_loss: 0.0974 - val_acc: 0.9130
Epoch 141/300
90/90 [==============================] - 0s - loss: 0.0170 - acc: 1.0000 - val_loss: 0.1076 - val_acc: 0.9130
Epoch 142/300
90/90 [==============================] - 0s - loss: 0.0328 - acc: 0.9889 - val_loss: 0.0997 - val_acc: 0.9565
Epoch 143/300
90/90 [==============================] - 0s - loss: 0.0207 - acc: 1.0000 - val_loss: 0.0917 - val_acc: 0.9565
Epoch 144/300
90/90 [==============================] - 0s - loss: 0.0175 - acc: 0.9889 - val_loss: 0.1152 - val_acc: 0.9130
Epoch 145/300
90/90 [==============================] - 1s - loss: 0.0216 - acc: 1.0000 - val_loss: 0.0747 - val_acc: 1.0000
Epoch 146/300
90/90 [==============================] - 1s - loss: 0.0171 - acc: 1.0000 - val_loss: 0.0850 - val_acc: 0.9565
Epoch 147/300
90/90 [==============================] - 1s - loss: 0.0378 - acc: 0.9889 - val_loss: 0.1627 - val_acc: 0.9130
Epoch 148/300
90/90 [==============================] - 1s - loss: 0.0321 - acc: 0.9889 - val_loss: 0.0840 - val_acc: 0.9565
Epoch 149/300
90/90 [==============================] - 0s - loss: 0.0291 - acc: 1.0000 - val_loss: 0.0758 - val_acc: 1.0000
Epoch 150/300
90/90 [==============================] - 0s - loss: 0.0206 - acc: 1.0000 - val_loss: 0.1039 - val_acc: 0.9130
Epoch 151/300
90/90 [==============================] - 0s - loss: 0.0159 - acc: 1.0000 - val_loss: 0.1360 - val_acc: 0.9130
Epoch 152/300
90/90 [==============================] - 0s - loss: 0.0169 - acc: 1.0000 - val_loss: 0.0791 - val_acc: 0.9565
Epoch 153/300
90/90 [==============================] - 0s - loss: 0.0184 - acc: 1.0000 - val_loss: 0.1268 - val_acc: 0.9565
Epoch 154/300
90/90 [==============================] - 1s - loss: 0.0229 - acc: 1.0000 - val_loss: 0.1319 - val_acc: 0.9565
Epoch 155/300
90/90 [==============================] - 1s - loss: 0.0112 - acc: 1.0000 - val_loss: 0.1080 - val_acc: 0.9565
Epoch 156/300
90/90 [==============================] - 1s - loss: 0.0080 - acc: 1.0000 - val_loss: 0.1089 - val_acc: 0.9565
Epoch 157/300
90/90 [==============================] - 1s - loss: 0.0115 - acc: 1.0000 - val_loss: 0.1102 - val_acc: 0.9565
Epoch 158/300
90/90 [==============================] - 0s - loss: 0.0297 - acc: 1.0000 - val_loss: 0.1371 - val_acc: 0.9130
Epoch 159/300
90/90 [==============================] - 0s - loss: 0.0323 - acc: 0.9778 - val_loss: 0.2731 - val_acc: 0.9130
Epoch 160/300
90/90 [==============================] - 0s - loss: 0.0681 - acc: 0.9778 - val_loss: 0.1236 - val_acc: 0.9130
Epoch 161/300
90/90 [==============================] - 0s - loss: 0.0110 - acc: 1.0000 - val_loss: 0.1396 - val_acc: 0.9130
Epoch 162/300
90/90 [==============================] - 1s - loss: 0.0114 - acc: 1.0000 - val_loss: 0.1090 - val_acc: 0.9565
Epoch 163/300
90/90 [==============================] - 1s - loss: 0.0097 - acc: 1.0000 - val_loss: 0.1054 - val_acc: 0.9565
Epoch 164/300
90/90 [==============================] - 1s - loss: 0.0122 - acc: 1.0000 - val_loss: 0.1334 - val_acc: 0.9130
Epoch 165/300
90/90 [==============================] - 0s - loss: 0.0139 - acc: 1.0000 - val_loss: 0.1088 - val_acc: 0.9565
Epoch 166/300
90/90 [==============================] - 0s - loss: 0.0177 - acc: 0.9889 - val_loss: 0.0811 - val_acc: 0.9565
Epoch 167/300
90/90 [==============================] - 1s - loss: 0.0231 - acc: 1.0000 - val_loss: 0.1379 - val_acc: 0.9565
Epoch 168/300
90/90 [==============================] - 0s - loss: 0.0171 - acc: 0.9889 - val_loss: 0.0871 - val_acc: 0.9130
Epoch 169/300
90/90 [==============================] - 1s - loss: 0.0137 - acc: 1.0000 - val_loss: 0.1199 - val_acc: 0.9565
Epoch 170/300
90/90 [==============================] - 1s - loss: 0.0336 - acc: 0.9889 - val_loss: 0.1733 - val_acc: 0.9130
Epoch 171/300
90/90 [==============================] - 0s - loss: 0.0417 - acc: 0.9778 - val_loss: 0.1402 - val_acc: 0.9565
Epoch 172/300
90/90 [==============================] - 1s - loss: 0.0256 - acc: 0.9778 - val_loss: 0.1422 - val_acc: 0.9565
Epoch 173/300
90/90 [==============================] - 0s - loss: 0.0306 - acc: 0.9889 - val_loss: 0.1464 - val_acc: 0.9565
Epoch 174/300
90/90 [==============================] - 1s - loss: 0.0105 - acc: 1.0000 - val_loss: 0.0995 - val_acc: 0.9565
Epoch 175/300
90/90 [==============================] - 0s - loss: 0.0097 - acc: 1.0000 - val_loss: 0.1273 - val_acc: 0.9565
Epoch 176/300
90/90 [==============================] - 0s - loss: 0.0087 - acc: 1.0000 - val_loss: 0.1212 - val_acc: 0.9565
Epoch 177/300
90/90 [==============================] - 0s - loss: 0.0164 - acc: 0.9889 - val_loss: 0.1164 - val_acc: 0.9565
Epoch 178/300
90/90 [==============================] - 1s - loss: 0.0117 - acc: 1.0000 - val_loss: 0.0887 - val_acc: 0.9130
Epoch 179/300
90/90 [==============================] - 0s - loss: 0.0106 - acc: 1.0000 - val_loss: 0.1232 - val_acc: 0.9565
Epoch 180/300
90/90 [==============================] - 0s - loss: 0.0072 - acc: 1.0000 - val_loss: 0.1177 - val_acc: 0.9565
Epoch 181/300
90/90 [==============================] - 0s - loss: 0.0057 - acc: 1.0000 - val_loss: 0.1270 - val_acc: 0.9565
Epoch 182/300
90/90 [==============================] - 0s - loss: 0.0068 - acc: 1.0000 - val_loss: 0.1109 - val_acc: 0.9565
Epoch 183/300
90/90 [==============================] - 1s - loss: 0.0086 - acc: 1.0000 - val_loss: 0.1193 - val_acc: 0.9565
Epoch 184/300
90/90 [==============================] - 1s - loss: 0.0114 - acc: 1.0000 - val_loss: 0.0905 - val_acc: 0.9565
Epoch 185/300
90/90 [==============================] - 0s - loss: 0.0094 - acc: 1.0000 - val_loss: 0.0876 - val_acc: 0.9130
Epoch 186/300
90/90 [==============================] - 0s - loss: 0.0114 - acc: 1.0000 - val_loss: 0.1277 - val_acc: 0.9565
Epoch 187/300
90/90 [==============================] - 0s - loss: 0.0074 - acc: 1.0000 - val_loss: 0.1292 - val_acc: 0.9565
Epoch 188/300
90/90 [==============================] - 0s - loss: 0.0063 - acc: 1.0000 - val_loss: 0.0926 - val_acc: 0.9565
Epoch 189/300
90/90 [==============================] - 0s - loss: 0.0216 - acc: 1.0000 - val_loss: 0.0919 - val_acc: 0.9565
Epoch 190/300
90/90 [==============================] - 1s - loss: 0.0230 - acc: 1.0000 - val_loss: 0.0950 - val_acc: 0.9565
Epoch 191/300
90/90 [==============================] - 0s - loss: 0.0050 - acc: 1.0000 - val_loss: 0.0949 - val_acc: 0.9130
Epoch 192/300
90/90 [==============================] - 0s - loss: 0.0111 - acc: 1.0000 - val_loss: 0.1243 - val_acc: 0.9565
Epoch 193/300
90/90 [==============================] - 0s - loss: 0.0581 - acc: 0.9778 - val_loss: 0.1805 - val_acc: 0.9565
Epoch 194/300
90/90 [==============================] - 0s - loss: 0.0513 - acc: 0.9889 - val_loss: 0.1249 - val_acc: 0.9130
Epoch 195/300
90/90 [==============================] - 0s - loss: 0.0134 - acc: 1.0000 - val_loss: 0.1310 - val_acc: 0.9130
Epoch 196/300
90/90 [==============================] - 1s - loss: 0.0074 - acc: 1.0000 - val_loss: 0.1177 - val_acc: 0.9130
Epoch 197/300
90/90 [==============================] - 0s - loss: 0.0070 - acc: 1.0000 - val_loss: 0.1186 - val_acc: 0.9130
Epoch 198/300
90/90 [==============================] - 0s - loss: 0.0376 - acc: 0.9889 - val_loss: 0.1205 - val_acc: 0.9130
Epoch 199/300
90/90 [==============================] - 0s - loss: 0.0172 - acc: 1.0000 - val_loss: 0.1694 - val_acc: 0.9130
Epoch 200/300
90/90 [==============================] - 0s - loss: 0.0208 - acc: 1.0000 - val_loss: 0.1018 - val_acc: 0.9130
Epoch 201/300
90/90 [==============================] - 0s - loss: 0.0201 - acc: 0.9889 - val_loss: 0.0970 - val_acc: 0.9130
Epoch 202/300
90/90 [==============================] - 0s - loss: 0.0119 - acc: 1.0000 - val_loss: 0.1239 - val_acc: 0.9565
Epoch 203/300
90/90 [==============================] - 0s - loss: 0.0058 - acc: 1.0000 - val_loss: 0.1197 - val_acc: 0.9565
Epoch 204/300
90/90 [==============================] - 0s - loss: 0.0118 - acc: 1.0000 - val_loss: 0.0985 - val_acc: 0.9130
Epoch 205/300
90/90 [==============================] - 0s - loss: 0.0071 - acc: 1.0000 - val_loss: 0.0979 - val_acc: 0.9130
Epoch 206/300
90/90 [==============================] - 0s - loss: 0.0186 - acc: 1.0000 - val_loss: 0.0914 - val_acc: 0.9130
Epoch 207/300
90/90 [==============================] - 0s - loss: 0.0103 - acc: 1.0000 - val_loss: 0.1213 - val_acc: 0.9565
Epoch 208/300
90/90 [==============================] - 0s - loss: 0.0046 - acc: 1.0000 - val_loss: 0.1220 - val_acc: 0.9565
Epoch 209/300
90/90 [==============================] - 0s - loss: 0.0058 - acc: 1.0000 - val_loss: 0.1125 - val_acc: 0.9565
Epoch 210/300
90/90 [==============================] - 0s - loss: 0.0116 - acc: 1.0000 - val_loss: 0.0976 - val_acc: 0.9565
Epoch 211/300
90/90 [==============================] - 0s - loss: 0.0116 - acc: 1.0000 - val_loss: 0.1024 - val_acc: 0.9130
Epoch 212/300
90/90 [==============================] - 0s - loss: 0.0155 - acc: 1.0000 - val_loss: 0.0942 - val_acc: 0.9130
Epoch 213/300
90/90 [==============================] - 1s - loss: 0.0189 - acc: 1.0000 - val_loss: 0.1291 - val_acc: 0.9565
Epoch 214/300
90/90 [==============================] - 1s - loss: 0.0094 - acc: 1.0000 - val_loss: 0.1052 - val_acc: 0.9565
Epoch 215/300
90/90 [==============================] - 1s - loss: 0.0113 - acc: 1.0000 - val_loss: 0.1050 - val_acc: 0.9565
Epoch 216/300
90/90 [==============================] - 1s - loss: 0.0024 - acc: 1.0000 - val_loss: 0.1054 - val_acc: 0.9565
Epoch 217/300
90/90 [==============================] - 1s - loss: 0.0078 - acc: 1.0000 - val_loss: 0.1559 - val_acc: 0.9130
Epoch 218/300
90/90 [==============================] - 0s - loss: 0.0150 - acc: 0.9889 - val_loss: 0.0952 - val_acc: 0.9565
Epoch 219/300
90/90 [==============================] - 0s - loss: 0.0156 - acc: 0.9889 - val_loss: 0.0926 - val_acc: 0.9565
Epoch 220/300
90/90 [==============================] - 0s - loss: 0.0156 - acc: 1.0000 - val_loss: 0.1104 - val_acc: 0.9565
Epoch 221/300
90/90 [==============================] - 0s - loss: 0.0085 - acc: 1.0000 - val_loss: 0.1062 - val_acc: 0.9565
Epoch 222/300
90/90 [==============================] - 0s - loss: 0.0118 - acc: 1.0000 - val_loss: 0.1462 - val_acc: 0.9130
Epoch 223/300
90/90 [==============================] - 0s - loss: 0.0075 - acc: 1.0000 - val_loss: 0.1268 - val_acc: 0.9565
Epoch 224/300
90/90 [==============================] - 1s - loss: 0.0063 - acc: 1.0000 - val_loss: 0.1001 - val_acc: 0.9565
Epoch 225/300
90/90 [==============================] - 1s - loss: 0.0026 - acc: 1.0000 - val_loss: 0.0983 - val_acc: 0.9565
Epoch 226/300
90/90 [==============================] - 0s - loss: 0.0073 - acc: 1.0000 - val_loss: 0.1049 - val_acc: 0.9565
Epoch 227/300
90/90 [==============================] - 0s - loss: 0.0114 - acc: 1.0000 - val_loss: 0.0840 - val_acc: 0.9130
Epoch 228/300
90/90 [==============================] - 0s - loss: 0.0157 - acc: 0.9889 - val_loss: 0.1114 - val_acc: 0.9565
Epoch 229/300
90/90 [==============================] - 0s - loss: 0.0122 - acc: 1.0000 - val_loss: 0.0686 - val_acc: 0.9565
Epoch 230/300
90/90 [==============================] - 0s - loss: 0.0093 - acc: 1.0000 - val_loss: 0.0700 - val_acc: 0.9565
Epoch 231/300
90/90 [==============================] - 1s - loss: 0.0099 - acc: 1.0000 - val_loss: 0.1028 - val_acc: 0.9565
Epoch 232/300
90/90 [==============================] - 1s - loss: 0.0064 - acc: 1.0000 - val_loss: 0.1025 - val_acc: 0.9565
Epoch 233/300
90/90 [==============================] - 0s - loss: 0.0074 - acc: 1.0000 - val_loss: 0.0926 - val_acc: 0.9565
Epoch 234/300
90/90 [==============================] - 0s - loss: 0.0052 - acc: 1.0000 - val_loss: 0.0959 - val_acc: 0.9565
Epoch 235/300
90/90 [==============================] - 0s - loss: 0.0084 - acc: 1.0000 - val_loss: 0.0849 - val_acc: 0.9565
Epoch 236/300
90/90 [==============================] - 0s - loss: 0.0142 - acc: 0.9889 - val_loss: 0.0851 - val_acc: 0.9565
Epoch 237/300
90/90 [==============================] - 1s - loss: 0.0188 - acc: 0.9889 - val_loss: 0.1226 - val_acc: 0.9565
Epoch 238/300
90/90 [==============================] - 0s - loss: 0.0084 - acc: 1.0000 - val_loss: 0.0801 - val_acc: 0.9565
Epoch 239/300
90/90 [==============================] - 0s - loss: 0.0038 - acc: 1.0000 - val_loss: 0.0891 - val_acc: 0.9565
Epoch 240/300
90/90 [==============================] - 1s - loss: 0.0067 - acc: 1.0000 - val_loss: 0.0719 - val_acc: 0.9565
Epoch 241/300
90/90 [==============================] - 0s - loss: 0.0148 - acc: 1.0000 - val_loss: 0.0950 - val_acc: 0.9565
Epoch 242/300
90/90 [==============================] - 1s - loss: 0.0024 - acc: 1.0000 - val_loss: 0.0893 - val_acc: 0.9565
Epoch 243/300
90/90 [==============================] - 0s - loss: 0.0044 - acc: 1.0000 - val_loss: 0.0908 - val_acc: 0.9565
Epoch 244/300
90/90 [==============================] - 1s - loss: 0.0048 - acc: 1.0000 - val_loss: 0.0920 - val_acc: 0.9565
Epoch 245/300
90/90 [==============================] - 1s - loss: 0.0027 - acc: 1.0000 - val_loss: 0.0913 - val_acc: 0.9565
Epoch 246/300
90/90 [==============================] - 1s - loss: 0.0036 - acc: 1.0000 - val_loss: 0.1076 - val_acc: 0.9565
Epoch 247/300
90/90 [==============================] - 1s - loss: 0.0092 - acc: 1.0000 - val_loss: 0.1066 - val_acc: 0.9565
Epoch 248/300
90/90 [==============================] - 1s - loss: 0.0039 - acc: 1.0000 - val_loss: 0.0955 - val_acc: 0.9565
Epoch 249/300
90/90 [==============================] - 0s - loss: 0.0114 - acc: 1.0000 - val_loss: 0.1633 - val_acc: 0.9130
Epoch 250/300
90/90 [==============================] - 0s - loss: 0.0125 - acc: 1.0000 - val_loss: 0.1188 - val_acc: 0.9565
Epoch 251/300
90/90 [==============================] - 0s - loss: 0.0142 - acc: 0.9889 - val_loss: 0.0771 - val_acc: 0.9130
Epoch 252/300
90/90 [==============================] - 0s - loss: 0.0114 - acc: 1.0000 - val_loss: 0.0702 - val_acc: 0.9565
Epoch 253/300
90/90 [==============================] - 1s - loss: 0.0113 - acc: 1.0000 - val_loss: 0.0801 - val_acc: 0.9565
Epoch 254/300
90/90 [==============================] - 1s - loss: 0.0043 - acc: 1.0000 - val_loss: 0.0929 - val_acc: 0.9565
Epoch 255/300
90/90 [==============================] - 1s - loss: 0.0106 - acc: 1.0000 - val_loss: 0.1069 - val_acc: 0.9565
Epoch 256/300
90/90 [==============================] - 0s - loss: 0.0073 - acc: 1.0000 - val_loss: 0.0679 - val_acc: 0.9565
Epoch 257/300
90/90 [==============================] - 0s - loss: 0.0047 - acc: 1.0000 - val_loss: 0.0780 - val_acc: 0.9565
Epoch 258/300
90/90 [==============================] - 0s - loss: 0.0059 - acc: 1.0000 - val_loss: 0.1025 - val_acc: 0.9565
Epoch 259/300
90/90 [==============================] - 0s - loss: 0.0031 - acc: 1.0000 - val_loss: 0.0988 - val_acc: 0.9565
Epoch 260/300
90/90 [==============================] - 0s - loss: 0.0079 - acc: 1.0000 - val_loss: 0.1362 - val_acc: 0.9565
Epoch 261/300
90/90 [==============================] - 0s - loss: 0.0097 - acc: 1.0000 - val_loss: 0.1144 - val_acc: 0.9565
Epoch 262/300
90/90 [==============================] - 0s - loss: 0.0032 - acc: 1.0000 - val_loss: 0.1109 - val_acc: 0.9565
Epoch 263/300
90/90 [==============================] - 0s - loss: 0.0041 - acc: 1.0000 - val_loss: 0.0958 - val_acc: 0.9565
Epoch 264/300
90/90 [==============================] - 0s - loss: 0.0105 - acc: 1.0000 - val_loss: 0.0787 - val_acc: 0.9565
Epoch 265/300
90/90 [==============================] - 0s - loss: 0.0060 - acc: 1.0000 - val_loss: 0.0792 - val_acc: 0.9565
Epoch 266/300
90/90 [==============================] - 1s - loss: 0.0048 - acc: 1.0000 - val_loss: 0.1111 - val_acc: 0.9565
Epoch 267/300
90/90 [==============================] - 0s - loss: 0.0062 - acc: 1.0000 - val_loss: 0.1125 - val_acc: 0.9565
Epoch 268/300
90/90 [==============================] - 0s - loss: 0.0043 - acc: 1.0000 - val_loss: 0.1085 - val_acc: 0.9565
Epoch 269/300
90/90 [==============================] - 0s - loss: 0.0028 - acc: 1.0000 - val_loss: 0.1072 - val_acc: 0.9565
Epoch 270/300
90/90 [==============================] - 0s - loss: 0.0093 - acc: 1.0000 - val_loss: 0.0868 - val_acc: 0.9565
Epoch 271/300
90/90 [==============================] - 0s - loss: 0.0085 - acc: 1.0000 - val_loss: 0.1240 - val_acc: 0.9565
Epoch 272/300
90/90 [==============================] - 0s - loss: 0.0031 - acc: 1.0000 - val_loss: 0.1353 - val_acc: 0.9565
Epoch 273/300
90/90 [==============================] - 0s - loss: 0.0119 - acc: 0.9889 - val_loss: 0.0767 - val_acc: 0.9565
Epoch 274/300
90/90 [==============================] - 0s - loss: 0.0056 - acc: 1.0000 - val_loss: 0.0722 - val_acc: 0.9130
Epoch 275/300
90/90 [==============================] - 0s - loss: 0.0082 - acc: 1.0000 - val_loss: 0.1111 - val_acc: 0.9565
Epoch 276/300
90/90 [==============================] - 0s - loss: 0.0041 - acc: 1.0000 - val_loss: 0.0826 - val_acc: 0.9565
Epoch 277/300
90/90 [==============================] - 1s - loss: 0.0051 - acc: 1.0000 - val_loss: 0.1086 - val_acc: 0.9565
Epoch 278/300
90/90 [==============================] - 1s - loss: 0.0030 - acc: 1.0000 - val_loss: 0.1004 - val_acc: 0.9565
Epoch 279/300
90/90 [==============================] - 0s - loss: 0.0036 - acc: 1.0000 - val_loss: 0.0816 - val_acc: 0.9565
Epoch 280/300
90/90 [==============================] - 0s - loss: 0.0229 - acc: 0.9889 - val_loss: 0.0761 - val_acc: 0.9130
Epoch 281/300
90/90 [==============================] - 0s - loss: 0.0066 - acc: 1.0000 - val_loss: 0.0879 - val_acc: 0.9565
Epoch 282/300
90/90 [==============================] - 0s - loss: 0.0020 - acc: 1.0000 - val_loss: 0.0870 - val_acc: 0.9565
Epoch 283/300
90/90 [==============================] - 0s - loss: 0.0058 - acc: 1.0000 - val_loss: 0.0758 - val_acc: 0.9565
Epoch 284/300
90/90 [==============================] - 0s - loss: 0.0034 - acc: 1.0000 - val_loss: 0.0777 - val_acc: 0.9130
Epoch 285/300
90/90 [==============================] - 1s - loss: 0.0046 - acc: 1.0000 - val_loss: 0.0844 - val_acc: 0.9565
Epoch 286/300
90/90 [==============================] - 0s - loss: 0.0198 - acc: 0.9889 - val_loss: 0.1136 - val_acc: 0.9130
Epoch 287/300
90/90 [==============================] - 0s - loss: 0.0013 - acc: 1.0000 - val_loss: 0.1121 - val_acc: 0.9130
Epoch 288/300
90/90 [==============================] - 0s - loss: 0.0080 - acc: 1.0000 - val_loss: 0.1443 - val_acc: 0.9565
Epoch 289/300
90/90 [==============================] - 0s - loss: 0.0048 - acc: 1.0000 - val_loss: 0.1185 - val_acc: 0.9130
Epoch 290/300
90/90 [==============================] - 0s - loss: 0.0071 - acc: 1.0000 - val_loss: 0.1343 - val_acc: 0.9565
Epoch 291/300
90/90 [==============================] - 1s - loss: 0.0041 - acc: 1.0000 - val_loss: 0.1142 - val_acc: 0.9130
Epoch 292/300
90/90 [==============================] - 0s - loss: 0.0032 - acc: 1.0000 - val_loss: 0.1091 - val_acc: 0.9130
Epoch 293/300
90/90 [==============================] - 1s - loss: 0.0108 - acc: 1.0000 - val_loss: 0.1949 - val_acc: 0.9565
Epoch 294/300
90/90 [==============================] - 1s - loss: 0.0121 - acc: 1.0000 - val_loss: 0.1314 - val_acc: 0.9130
Epoch 295/300
90/90 [==============================] - 1s - loss: 0.0101 - acc: 1.0000 - val_loss: 0.1855 - val_acc: 0.9565
Epoch 296/300
90/90 [==============================] - 0s - loss: 0.0038 - acc: 1.0000 - val_loss: 0.1862 - val_acc: 0.9565
Epoch 297/300
90/90 [==============================] - 1s - loss: 0.0262 - acc: 0.9889 - val_loss: 0.1130 - val_acc: 0.9565
Epoch 298/300
90/90 [==============================] - 0s - loss: 0.0090 - acc: 1.0000 - val_loss: 0.1036 - val_acc: 0.9565
Epoch 299/300
90/90 [==============================] - 1s - loss: 0.0025 - acc: 1.0000 - val_loss: 0.1118 - val_acc: 0.9565
Epoch 300/300
90/90 [==============================] - 0s - loss: 0.0016 - acc: 1.0000 - val_loss: 0.1133 - val_acc: 0.9565
Wall time: 4min 57s

In [20]:
plt.figure(figsize=(25,15))
plt.plot(hist2.history['acc'],label='acc')
plt.plot(hist2.history['loss'],label='loss')
plt.plot(hist2.history['val_acc'],'--',label='val_acc')
plt.plot(hist2.history['val_loss'],'--',label='val_loss')
plt.legend()
plt.ylim(0,max(hist2.history['acc'])+0.05)
plt.grid('off')



In [21]:
model2.evaluate(x_te2,y_te2,batch_size=50,show_accuracy=True,verbose=1)


29/29 [==============================] - 0s
Out[21]:
[0.33899489045143127, 0.89655172413793105]

In [22]:
model2.summary()


--------------------------------------------------------------------------------
Initial input shape: (None, 1, 50, 50)
--------------------------------------------------------------------------------
Layer (name)                  Output Shape                  Param #             
--------------------------------------------------------------------------------
Convolution2D (convolution2d) (None, 20, 50, 50)            2020                
Activation (activation)       (None, 20, 50, 50)            0                   
MaxPooling2D (maxpooling2d)   (None, 20, 25, 25)            0                   
Dropout (dropout)             (None, 20, 25, 25)            0                   
Convolution2D (convolution2d) (None, 10, 25, 25)            20010               
Activation (activation)       (None, 10, 25, 25)            0                   
MaxPooling2D (maxpooling2d)   (None, 10, 12, 12)            0                   
Dropout (dropout)             (None, 10, 12, 12)            0                   
Flatten (flatten)             (None, 1440)                  0                   
Dense (dense)                 (None, 1250)                  1801250             
Activation (activation)       (None, 1250)                  0                   
Dense (dense)                 (None, 2)                     2502                
--------------------------------------------------------------------------------
Total params: 1825782
--------------------------------------------------------------------------------

In [23]:
def plot_wegh (model):
    '''
    Plot weights of convolution layer
    only for first layer
    
    #Args
    model : fitted model
    '''
    wegh_arr = model.get_weights()
    num = len(wegh_arr[0])
    if type(np.sqrt(num)) is int:
        col = np.sqrt(num)
        row = np.sqrt(num) 
    else:
        col = int(num/2)
        row = int(num/col)
        
    fig ,axes = plt.subplots(row,col, subplot_kw={'xticks': [], 'yticks': []})
    plt.subplots_adjust(hspace=0.02,wspace = 0.05)
    
    for i, ax in zip(xrange(num),axes.flat):
        
        ax.imshow(wegh_arr[0][i][0])
        ax.grid('off')
    plt.show()

In [24]:
plot_wegh(model2)



In [25]:
m2_wegh = model2.get_weights()
for a in m2_wegh:
    print(np.shape(a))


(20L, 1L, 10L, 10L)
(20L,)
(10L, 20L, 10L, 10L)
(10L,)
(1440L, 1250L)
(1250L,)
(1250L, 2L)
(2L,)

In [26]:
s = 0
for a in m2_wegh[0]:
    s +=a[0]
    print(s)


[[ 0.00620134 -0.13845733  0.17591509  0.0215441  -0.13001302 -0.10961664
   0.09710694  0.11488244  0.06559778 -0.14923584]
 [-0.04241746 -0.19932838 -0.07904346 -0.07725573  0.12621395 -0.04883246
  -0.00058707  0.01919791  0.03127079  0.10166034]
 [ 0.14732262 -0.17069477  0.21938354  0.05472885  0.1744183  -0.16910024
  -0.19700043  0.05240116  0.05536261 -0.02083936]
 [-0.13052641  0.13355359 -0.02104438 -0.16838482  0.11542881  0.1082248
  -0.0273373   0.02824887  0.01728136  0.00762939]
 [ 0.19872969  0.09865101  0.03856189  0.13712491 -0.22385548  0.07265813
  -0.20964214  0.12037341  0.21269387 -0.11606394]
 [-0.13645858  0.00979582 -0.07854454 -0.16572605  0.02083321 -0.19112387
  -0.10770136  0.00489368 -0.16099103  0.05978655]
 [-0.19209585 -0.00059606  0.16589729  0.04225431 -0.12321249 -0.05634013
   0.11261923  0.06198092  0.19332975 -0.01244372]
 [-0.20585516 -0.19776061  0.02017435 -0.17258973  0.06694929  0.1213682
  -0.01612765 -0.10077311 -0.18276682  0.11446702]
 [-0.03165622 -0.03147631  0.1930169  -0.11984684 -0.01795018 -0.04037216
  -0.21662343  0.22861683  0.21385407 -0.18548965]
 [-0.05713855 -0.05520208  0.20014976 -0.12693036  0.09283825 -0.17254964
   0.06280977  0.17607276 -0.1813834   0.00360906]]
[[ 0.12648733 -0.1715658  -0.04274493  0.00793372 -0.24602479  0.00053056
  -0.06071877 -0.07959089  0.22240415 -0.17983669]
 [-0.19616255 -0.2151514   0.12246741 -0.08920176  0.16007861 -0.1307243
  -0.16665187  0.20214635 -0.01182121  0.09466124]
 [-0.043963   -0.25230983  0.4158285  -0.12699297 -0.00279468 -0.25509575
  -0.08157963 -0.17974241  0.12664855  0.00085032]
 [-0.17001972  0.16463968 -0.18536471 -0.26581374 -0.03860645  0.33363527
  -0.22697277 -0.06540903 -0.09372692  0.23346052]
 [ 0.17904067 -0.0960282  -0.11639885  0.34692776 -0.4238773   0.03165868
  -0.00897957  0.24738108  0.28606576 -0.01286658]
 [-0.05731665  0.1650535  -0.21493904 -0.08247419 -0.11216547 -0.08843334
   0.12803112 -0.10655545 -0.0254654  -0.05333728]
 [-0.10637771  0.11436314  0.04907041 -0.15163708 -0.03625487 -0.16616949
   0.29388204 -0.03004359  0.22026137  0.19494225]
 [ 0.01569472 -0.07173236  0.13258889 -0.12881748  0.09683006 -0.0088532
   0.07296193  0.11191168 -0.05380903 -0.05973295]
 [-0.08699402 -0.17840023  0.31796443 -0.27603453  0.08220148  0.06792994
  -0.09506997  0.34675333  0.23438676 -0.35152513]
 [-0.03214089 -0.26128608  0.17031342 -0.24370655  0.05389659 -0.19857863
  -0.01159791  0.25335765  0.00444444 -0.20781748]]
[[ 0.18562226 -0.08513047 -0.12810802  0.19169435 -0.02311353  0.00232128
   0.00097791 -0.19683085  0.17008844 -0.15230738]
 [-0.14756706 -0.10669463  0.16707271 -0.11366589  0.1137715  -0.01624795
  -0.18048538  0.28420568 -0.18649526  0.25994501]
 [-0.1589946  -0.3915568   0.19513196  0.06912644  0.10562368 -0.44977534
  -0.12415126 -0.23835555  0.31550902 -0.1659136 ]
 [-0.06384127  0.0465009  -0.35501307 -0.14039882 -0.06738956  0.16103803
  -0.11929356 -0.26072609  0.07758689  0.21493801]
 [ 0.29653144 -0.18157239 -0.28148788  0.55699474 -0.35193354  0.03860567
  -0.21675633  0.06967835  0.09666331  0.10369477]
 [-0.14306471  0.19889714 -0.30127457  0.11275619  0.10032026 -0.26437414
  -0.00684933  0.02738911 -0.03862541 -0.01286658]
 [-0.19530523  0.27415708  0.26968873 -0.27586973  0.08438636 -0.30612043
   0.06951942 -0.08954588  0.14012417  0.09323205]
 [ 0.0522916  -0.28789136 -0.02484636 -0.11756767  0.00700226  0.13442239
   0.1769557   0.17248754 -0.13246688 -0.09218913]
 [-0.06744661 -0.2928896   0.5110718  -0.36931378  0.20367074  0.10483879
  -0.15321599  0.19525988  0.03090553 -0.28026614]
 [-0.00695284 -0.45201561  0.13557684 -0.20052455  0.27172059 -0.18263046
   0.10703527  0.08658603  0.04700967 -0.29751369]]
[[ 0.28340718 -0.19286425 -0.05114582  0.10456552 -0.16517672 -0.15968129
  -0.12480658 -0.17365061  0.39992416 -0.29322118]
 [-0.30813146  0.03809217  0.31537399 -0.0223982  -0.09934226  0.06948723
  -0.20215429  0.4588168  -0.06709426  0.40387702]
 [-0.04107838 -0.43818507  0.37561971  0.24827801  0.16986895 -0.60612965
  -0.12357545 -0.11703541  0.36064258 -0.32318974]
 [ 0.11864139 -0.092846   -0.38567647 -0.29469296  0.01336909  0.1953612
  -0.21540818 -0.17310216 -0.11224973  0.36073768]
 [ 0.5083397   0.01705785 -0.49528211  0.33540374 -0.33199    -0.01330065
  -0.22056755 -0.04056732  0.17152828 -0.02421512]
 [ 0.06340586  0.19710557 -0.35553232  0.13425235 -0.02171556 -0.42552674
   0.1755109  -0.0878676  -0.06269419 -0.11063024]
 [-0.14759395  0.28707522  0.08420457 -0.25096107  0.15038246 -0.50246572
   0.23114505 -0.21450657 -0.07346945  0.10953709]
 [ 0.2569333  -0.45602414 -0.13456181 -0.09043232  0.23797148  0.002607
   0.11595342  0.23079154  0.07574891 -0.15565553]
 [-0.26735973 -0.14475133  0.45971128 -0.16363396  0.32525653  0.32341224
  -0.31325957  0.28257424 -0.06163114 -0.35279903]
 [-0.16796744 -0.42578799 -0.00872254 -0.41724569  0.11644605 -0.05607525
   0.11542758  0.28823537 -0.07875925 -0.49572706]]
[[  8.76594037e-02  -2.42696971e-01  -1.49890900e-01  -6.81910217e-02
   -2.95480311e-01  -3.52128685e-01   9.37055200e-02  -1.68551311e-01
    2.23009646e-01  -1.40827551e-01]
 [ -4.26561862e-01   5.03713377e-02   3.26109231e-01  -1.94370091e-01
   -6.18611164e-02   4.29804325e-02  -3.73864293e-01   3.93558890e-01
    7.06496015e-02   3.71135712e-01]
 [ -1.66660577e-01  -5.86801708e-01   5.03344417e-01   1.12893209e-01
    1.38772547e-01  -6.02529883e-01  -1.57554984e-01   6.57737255e-05
    3.00744355e-01  -2.35161841e-01]
 [  1.94991425e-01   1.20559908e-01  -5.32344818e-01  -6.51702434e-02
    1.10182017e-01   2.69103885e-01  -2.76382267e-03  -1.70321643e-01
   -9.59272981e-02   2.46165335e-01]
 [  4.25509483e-01   1.40535697e-01  -5.18843591e-01   2.74979860e-01
   -3.33375722e-01   9.39309299e-02  -9.20031816e-02  -2.28980333e-01
   -1.23248994e-03  -2.83675659e-02]
 [ -1.03373304e-01   1.39666602e-01  -2.75396854e-01  -2.19141841e-02
   -7.36469477e-02  -6.17929459e-01  -1.08088553e-02   1.10924080e-01
   -1.96088612e-01  -2.37643763e-01]
 [  6.04506582e-02   1.77078635e-01   2.28704989e-01  -3.67386609e-01
    9.29197669e-03  -7.08830535e-01   1.99937537e-01  -1.89229354e-01
   -1.82209194e-01   1.19197629e-01]
 [  3.42064857e-01  -2.74914533e-01  -1.28539279e-02  -1.44846469e-01
    4.30547595e-01   2.60478742e-02  -9.95185822e-02   3.73519361e-01
    2.04709381e-01  -1.89848095e-02]
 [ -2.61788636e-01  -8.70234817e-02   3.67680490e-01  -2.52800137e-02
    5.68395317e-01   1.64903387e-01  -3.31988901e-01   3.68068784e-01
   -1.58735111e-01  -2.86162704e-01]
 [ -3.72397900e-01  -3.57755333e-01   5.37241735e-02  -4.88235831e-01
    3.49351764e-01  -2.47651748e-02   5.52407652e-02   1.06565550e-01
    7.80692250e-02  -3.75956774e-01]]
[[  2.58296013e-01  -4.67082143e-01  -1.52094290e-01  -9.41370130e-02
   -1.26250044e-01  -5.20529866e-01  -1.36371017e-01  -2.66301721e-01
    2.85199374e-01  -2.04369426e-04]
 [ -5.51717281e-01   2.06435509e-02   4.73811835e-01   1.52239203e-03
   -1.10471755e-01  -1.05890080e-01  -1.88189492e-01   3.17949712e-01
    2.05268860e-01   1.68877050e-01]
 [ -2.33404726e-01  -6.86743617e-01   4.43055183e-01   2.88371742e-02
    3.50753576e-01  -5.44105053e-01   1.25138611e-02  -1.18965723e-01
    4.96612430e-01  -1.92947239e-02]
 [  6.23218715e-02   2.72176340e-02  -7.54490733e-01  -2.52781749e-01
    1.41429976e-02   9.12838578e-02   1.15851136e-02  -3.18388313e-01
   -1.57440662e-01   3.35901380e-01]
 [  3.79683763e-01   2.62754858e-01  -4.80448425e-01   2.69293845e-01
   -3.62224936e-01   3.03980559e-02  -1.76141247e-01  -3.13455611e-01
   -5.28708883e-02  -2.38484323e-01]
 [ -3.26330245e-01   2.27800116e-01  -3.48040581e-01   1.07628241e-01
    6.68284446e-02  -7.17232287e-01   1.28747329e-01   1.39977112e-01
   -2.06307307e-01  -1.33891463e-01]
 [ -3.81574929e-02  -4.56383675e-02   2.23413259e-01  -5.34640849e-01
    2.52070665e-01  -5.35041332e-01   1.81569755e-02  -4.14593607e-01
   -1.10920787e-01   1.12099946e-02]
 [  3.32016200e-01  -3.91522288e-01  -2.16805339e-01   5.58544993e-02
    2.59089649e-01   4.48840261e-02   4.71194983e-02   3.52848023e-01
    3.20214480e-01  -2.53077187e-02]
 [ -1.48254514e-01  -1.31366491e-01   1.54760376e-01   3.52718607e-02
    7.41757989e-01   5.14307618e-02  -2.69179344e-01   2.49191955e-01
    6.33592010e-02  -6.26852214e-02]
 [ -4.16433424e-01  -4.65382785e-01  -4.64087240e-02  -4.05216217e-01
    5.37876487e-01   1.69157356e-01  -1.17834911e-01   4.95944135e-02
    4.78990674e-02  -3.83739054e-01]]
[[ 0.23209864 -0.57481939 -0.25807863 -0.2112454  -0.2534377  -0.5267843
  -0.19969372 -0.06088404  0.29967865  0.14230354]
 [-0.58743852  0.24088328  0.48735365 -0.15932055 -0.04356671  0.12906358
  -0.07143593  0.41722268  0.32398865  0.07885726]
 [-0.24077696 -0.90721428  0.61362696 -0.16669926  0.13907172 -0.57472259
   0.1163123  -0.04274409  0.46024516  0.18513758]
 [ 0.04206129  0.14565951 -0.89354873 -0.29226339  0.19543862 -0.12080996
   0.08365273 -0.52482885 -0.03744765  0.31431609]
 [ 0.41721478  0.13926362 -0.30206585  0.23879725 -0.24257594 -0.03789833
  -0.05452046 -0.31618851 -0.08964458 -0.22079962]
 [-0.5333879   0.03498273 -0.46003684  0.07186163 -0.00465576 -0.93361533
   0.14929995  0.3125681  -0.38661814 -0.31496438]
 [ 0.06590697 -0.05428525  0.13525626 -0.52988279  0.21041624 -0.33449692
  -0.21311742 -0.28055155 -0.28872341 -0.13762185]
 [ 0.41455013 -0.38107175 -0.19910285  0.05620683  0.12065817  0.03082978
  -0.05180799  0.33290297  0.25825974  0.04553296]
 [-0.01150724  0.03648724  0.38946319  0.03330551  0.79848969  0.05701005
  -0.4708131   0.18375984  0.05805115 -0.01206008]
 [-0.45033947 -0.38116962  0.11589871 -0.34968099  0.44823337  0.38083783
  -0.2145886   0.190274    0.26654348 -0.49381626]]
[[ 0.0093018  -0.81412822 -0.40543956 -0.01432332 -0.16725677 -0.45031297
  -0.14037897  0.10543865  0.3633543   0.08871427]
 [-0.65966177  0.00990871  0.39848727 -0.29914302 -0.04278526  0.02132176
  -0.16097213  0.6024158   0.33355656  0.05161736]
 [-0.41066843 -1.01825225  0.82638717 -0.38323849  0.16509138 -0.57531112
   0.13770108  0.07259995  0.27630103  0.42134455]
 [-0.04980499  0.13052297 -0.70819485 -0.27124715  0.30929074 -0.2061806
   0.11340089 -0.40742469 -0.10140719  0.31918842]
 [ 0.542346    0.21209154 -0.22047141  0.09929791 -0.03461842 -0.04237929
  -0.26325768 -0.45352563 -0.21816242 -0.24131469]
 [-0.63376087 -0.12364279 -0.32004553  0.16023019  0.02448819 -1.05014193
   0.01891477  0.36622912 -0.58790421 -0.16937581]
 [-0.0487271   0.09953938 -0.05426417 -0.5455355   0.10219327 -0.10061146
  -0.32782862 -0.0655304  -0.2437842  -0.11272646]
 [ 0.47460476 -0.22250845 -0.3487851  -0.1348688   0.04091158  0.20383058
  -0.12202012  0.19973817  0.43430242  0.07479493]
 [ 0.0333974  -0.05555583  0.32786405  0.14479804  1.02769983  0.2258922
  -0.67090911  0.17352881 -0.09537134 -0.13962108]
 [-0.40775973 -0.19141337  0.16554216 -0.37100911  0.25729829  0.59725249
  -0.27481356  0.32414904  0.4547531  -0.69447845]]
[[-0.01745883 -0.8547709  -0.30793279  0.15449613 -0.21713755 -0.60885894
   0.04858266  0.34552199  0.33075988  0.23638435]
 [-0.79206818 -0.03569669  0.53651017 -0.44235647 -0.22959504  0.00421719
  -0.10652471  0.48220387  0.39072189  0.08626314]
 [-0.45405281 -1.14333141  0.71806228 -0.23955806  0.07354187 -0.82299089
   0.20810221  0.01909439  0.46362984  0.33165964]
 [-0.21317013  0.00613432 -0.50441206 -0.32150385  0.09890027 -0.09015496
   0.15177141 -0.29956868 -0.15192597  0.42506546]
 [ 0.71988904  0.33452052 -0.35537162  0.18811172 -0.25519156 -0.24920163
  -0.09839536 -0.3945336  -0.42308196 -0.19431263]
 [-0.78157091 -0.14289793 -0.42594829  0.19515708  0.19838402 -1.04607224
   0.06182079  0.58346236 -0.6478737  -0.20855376]
 [ 0.04664293  0.20774806  0.12923858 -0.7503494   0.15146571 -0.35224712
  -0.32258585  0.10001619 -0.12159361 -0.37229553]
 [ 0.3792212  -0.38012043 -0.29037657 -0.25596565  0.19105509  0.27929109
  -0.05487791  0.11551734  0.59136903  0.07146762]
 [-0.16866417  0.05622905  0.19046077  0.15113214  0.78348303  0.37026069
  -0.45722082  0.1370012   0.02090652 -0.20723414]
 [-0.28764069 -0.09922278  0.26999092 -0.58926332  0.0369086   0.38670897
  -0.24942783  0.47266719  0.50121158 -0.90343422]]
[[-0.13295288 -1.06408    -0.4347623   0.24926579 -0.30175561 -0.76500124
   0.13884059  0.21580857  0.44440502  0.3763735 ]
 [-0.65128392 -0.12600672  0.64310569 -0.56328231 -0.43068457  0.17035376
  -0.11101738  0.42245314  0.49445528  0.2759065 ]
 [-0.3225458  -1.03393984  0.48021534 -0.38224953  0.05540283 -0.65052015
   0.17871262 -0.02390057  0.38304585  0.14093491]
 [-0.18709621 -0.17718905 -0.39090067 -0.29480532  0.18160897 -0.30474484
   0.33039594 -0.46500212  0.01476601  0.40309972]
 [ 0.66673154  0.46625119 -0.16727883  0.3848635  -0.35399204 -0.30694902
   0.09945855 -0.58415592 -0.3439379  -0.21226196]
 [-0.84862626  0.03919005 -0.36753711  0.16281858  0.39487612 -0.89571136
  -0.17087919  0.63065147 -0.60517633 -0.18336749]
 [ 0.23756137  0.22313873  0.28019688 -0.77618861 -0.01876791 -0.49789879
  -0.20503548  0.22282964 -0.18788719 -0.24737078]
 [ 0.2770611  -0.48187637 -0.35928261 -0.38776749  0.0385101   0.34449166
  -0.27993762 -0.00726068  0.56485802  0.22562033]
 [-0.27614546 -0.1140276   0.37495375  0.24414678  0.56186175  0.25622603
  -0.39285979  0.28976876 -0.04151969 -0.00180581]
 [-0.40695488  0.01457855  0.16200165 -0.51241052  0.14068697  0.41120693
  -0.17929171  0.47799715  0.34076399 -0.78840774]]
[[-0.15910944 -0.85027665 -0.47905499  0.34797719 -0.30791083 -0.84781986
   0.06042522  0.40398371  0.57933778  0.21148905]
 [-0.72821182  0.0425179   0.5578835  -0.60982621 -0.62224132  0.11943033
  -0.32101715  0.33436003  0.63081789  0.38447729]
 [-0.24214284 -1.17915487  0.63266128 -0.31214151 -0.16371495 -0.50082725
   0.38265556 -0.0486702   0.21378829  0.1505267 ]
 [ 0.02708524 -0.23427266 -0.48012584 -0.36773133 -0.00714011 -0.13184455
   0.5116477  -0.56179464  0.04249253  0.18933368]
 [ 0.88985479  0.62566298 -0.2751506   0.49239367 -0.33079547 -0.45044953
   0.17184493 -0.78688955 -0.13904504 -0.33982056]
 [-0.84996432  0.03411086 -0.31023395  0.20587325  0.37944749 -1.03224421
  -0.02038363  0.48886317 -0.8207041  -0.15053447]
 [ 0.11177519  0.25199246  0.17917155 -0.97755665 -0.20628701 -0.71321833
  -0.42231882  0.34345675 -0.33485502 -0.42239785]
 [ 0.3515442  -0.4564046  -0.50458217 -0.46431664 -0.16038199  0.53276294
  -0.37640873 -0.10199622  0.59146005  0.36594748]
 [-0.10127918 -0.24364817  0.44602168  0.3311708   0.45112947  0.29833049
  -0.52254653  0.49982482 -0.25156051  0.22214085]
 [-0.50356936 -0.01310744  0.33705223 -0.68398559  0.3242178   0.24874379
  -0.09838667  0.64030319  0.36266699 -0.82393122]]
[[-0.21760562 -0.98695576 -0.6881609   0.37326458 -0.30959067 -0.8579765
  -0.0513251   0.35743693  0.51129502  0.26450261]
 [-0.51046675 -0.03405379  0.60011142 -0.69684833 -0.81781399  0.09528475
  -0.11994515  0.22949904  0.71269262  0.29857776]
 [-0.35766664 -0.96764582  0.46002275 -0.25119287 -0.29362649 -0.59310329
   0.31605315 -0.18061565  0.14632136  0.26564354]
 [-0.16302924 -0.37271181 -0.5859825  -0.57538837 -0.02634616 -0.02659288
   0.52292657 -0.56664461  0.02194534  0.37964398]
 [ 0.68264258  0.64629126 -0.10952136  0.6338616  -0.23211357 -0.54732454
   0.35912037 -0.78328937  0.08393249 -0.48504049]
 [-0.64555651 -0.18520665 -0.24576762  0.17122838  0.56232375 -1.03176594
   0.19693677  0.29319656 -0.64337718 -0.21611388]
 [ 0.23143035  0.21687883  0.20985562 -0.8612923  -0.20877673 -0.51447237
  -0.3440572   0.37605092 -0.31342322 -0.37650436]
 [ 0.11839192 -0.67055708 -0.40073147 -0.58839881  0.00661021  0.67729932
  -0.23591527 -0.23974222  0.41643023  0.56193256]
 [ 0.11061187 -0.04870188  0.43169722  0.23353706  0.22653273  0.2628257
  -0.43800628  0.57108992 -0.3426643   0.00180313]
 [-0.65542215 -0.20481688  0.39032689 -0.85674763  0.3702687   0.11726378
  -0.22194642  0.77297491  0.45932257 -0.62241489]]
[[-0.19517501 -0.74320304 -0.46129775  0.13395528 -0.49195361 -1.03038883
   0.16628164  0.37188673  0.57643503  0.09887531]
 [-0.43554831  0.05386548  0.81852037 -0.55978245 -0.99618334  0.07659268
  -0.17310381  0.03980115  0.76537377  0.10405584]
 [-0.17171414 -0.83655518  0.61968863 -0.22858159 -0.51931477 -0.42711538
   0.54057407 -0.22805285  0.18151864  0.37992063]
 [-0.14688516 -0.23332731 -0.35447037 -0.48142335  0.10586624  0.10500792
   0.41957656 -0.53827143 -0.14134236  0.25338379]
 [ 0.51268542  0.82135582 -0.27505955  0.82625479 -0.05539885 -0.48108375
   0.39244136 -0.97837156 -0.08534196 -0.54760569]
 [-0.49467814 -0.40085852 -0.19547181  0.4051609   0.75015056 -0.82814205
  -0.0240106   0.44393897 -0.86312616 -0.28416514]
 [ 0.14625111  0.20023181  0.08126877 -0.88782483 -0.15604204 -0.64446759
  -0.46244431  0.29513958 -0.14366397 -0.52056098]
 [ 0.18764821 -0.75929064 -0.51411599 -0.3803595  -0.08587687  0.81522214
  -0.41825369 -0.18293038  0.47732311  0.35450134]
 [-0.0406314  -0.15025474  0.46435162  0.07753101  0.23066784  0.26898852
  -0.59234101  0.51915032 -0.14419465 -0.20134516]
 [-0.85419583 -0.29684645  0.58870476 -0.78137726  0.37323377  0.01371971
  -0.22327922  0.68858778  0.47359964 -0.73091137]]
[[ -6.33992702e-02  -5.57471633e-01  -4.67437744e-01   1.14295609e-01
   -2.91741192e-01  -9.29164648e-01   8.58967900e-02   3.46255243e-01
    7.17006862e-01   1.03373662e-01]
 [ -5.59799850e-01  -7.51007721e-03   8.03398311e-01  -7.30502963e-01
   -1.10128427e+00   2.10695952e-01  -2.15923682e-01   1.53949767e-01
    6.69368744e-01  -3.47451568e-02]
 [ -1.66822910e-01  -8.55783641e-01   4.01984453e-01  -3.39112520e-01
   -4.23014700e-01  -6.41741633e-01   6.33202851e-01  -4.07825589e-01
   -5.29438257e-05   4.44212705e-01]
 [ -1.58552185e-01  -3.26950103e-01  -3.84208590e-01  -4.15616989e-01
   -7.25015700e-02   1.97013542e-02   2.08114952e-01  -4.92758781e-01
   -5.58552966e-02   1.43115222e-01]
 [  4.02320921e-01   6.02058768e-01  -3.43071818e-01   6.90665245e-01
    7.48039633e-02  -4.84623492e-01   2.31013209e-01  -9.57535088e-01
    5.07787466e-02  -3.73011529e-01]
 [ -3.77651155e-01  -5.09324908e-01  -1.46574900e-01   2.54679590e-01
    6.76848173e-01  -9.91767585e-01  -4.48790789e-02   4.75790173e-01
   -1.04515374e+00  -4.57922757e-01]
 [  2.48949975e-01   2.48577416e-01   1.26962870e-01  -9.82616544e-01
   -6.85112253e-02  -7.46220827e-01  -5.90204418e-01   8.52408856e-02
   -1.44936964e-01  -5.76946557e-01]
 [  1.68973655e-01  -7.19400883e-01  -3.46974701e-01  -3.78842354e-01
   -2.15191513e-01   7.25296617e-01  -6.20034575e-01  -3.02191913e-01
    2.90837675e-01   2.31448695e-01]
 [  1.03306696e-01  -8.39973316e-02   4.63297039e-01  -1.26849204e-01
    3.34884375e-02   4.90800530e-01  -3.75840962e-01   3.78561556e-01
   -1.93567738e-01  -1.33645326e-01]
 [ -7.66378164e-01  -4.35182542e-01   4.57005024e-01  -8.19418252e-01
    4.66203332e-01   1.32368654e-01  -4.08493996e-01   8.77109528e-01
    6.74094439e-01  -8.24287772e-01]]
[[-0.10480462 -0.75953996 -0.22950843  0.33630329 -0.14899158 -1.01098692
  -0.12513666  0.28315371  0.72024518  0.18039161]
 [-0.40642661 -0.10014457  0.92163479 -0.53395957 -1.05158412  0.30464917
  -0.31554401 -0.05706938  0.71345103  0.08042629]
 [-0.21656752 -0.87527376  0.59488529 -0.14454506 -0.48336899 -0.46521926
   0.68466544 -0.39981556 -0.01922832  0.46383744]
 [-0.18011764 -0.52560389 -0.15863241 -0.4602415  -0.09565365  0.1832414
   0.26731139 -0.60477781 -0.23439816 -0.03485148]
 [ 0.43506691  0.79671359 -0.24823704  0.59407341  0.27366579 -0.48520529
   0.06877525 -0.87053096  0.05737355 -0.44131988]
 [-0.54068178 -0.66285157 -0.19098699  0.03637506  0.85994756 -0.94964874
  -0.06577665  0.62419295 -0.98891896 -0.52076948]
 [ 0.29722664  0.32597458 -0.08201315 -1.18543327 -0.01989238 -0.6316402
  -0.71650285 -0.0062397  -0.3686114  -0.54315883]
 [ 0.37440208 -0.53244901 -0.50698876 -0.54554319 -0.12958559  0.61383075
  -0.44417235 -0.29444352  0.33277825  0.01123321]
 [ 0.14570156 -0.24537295  0.52574039 -0.11840913 -0.12599243  0.35156995
  -0.38193646  0.58314097 -0.14203739 -0.26376444]
 [-0.79760855 -0.46774435  0.44818228 -0.95718646  0.26747802  0.10164915
  -0.5226258   0.96822244  0.88603592 -0.58822018]]
[[ -1.50744572e-01  -7.65848994e-01  -1.17855214e-01   3.57321978e-01
   -3.38648647e-01  -1.16101491e+00  -1.46346629e-01   4.64634091e-01
    5.81106186e-01   4.02746499e-01]
 [ -3.89550358e-01  -2.64035583e-01   1.12583280e+00  -7.27994025e-01
   -9.11443293e-01   4.04155493e-01  -2.96995193e-01  -2.06425607e-01
    5.91906071e-01  -1.28133163e-01]
 [ -2.43050218e-01  -9.14806247e-01   6.57753646e-01  -2.30362356e-01
   -4.50172842e-01  -5.32698333e-01   8.22131634e-01  -6.18370950e-01
   -1.75961763e-01   4.85637665e-01]
 [ -1.92871168e-01  -5.59964001e-01  -2.77718842e-01  -4.28654760e-01
   -1.82630062e-01   1.95374802e-01   4.13247824e-01  -7.55566001e-01
   -1.76370829e-01  -2.75105238e-04]
 [  3.02818120e-01   7.19240844e-01  -1.79695979e-01   4.53264594e-01
    4.63759333e-01  -5.32823980e-01  -3.91810983e-02  -1.03427708e+00
   -1.80835985e-02  -4.87875640e-01]
 [ -6.68919384e-01  -5.89739978e-01  -1.78907931e-01  -1.46792263e-01
    7.32583165e-01  -7.25943983e-01  -2.67358661e-01   7.82483280e-01
   -1.17257524e+00  -3.50898951e-01]
 [  4.42183673e-01   1.52836874e-01  -2.22130194e-01  -1.04598427e+00
   -8.93722475e-02  -7.29319453e-01  -9.20108020e-01  -3.02203111e-02
   -2.87711799e-01  -4.79344189e-01]
 [  5.38589597e-01  -4.70611185e-01  -5.77314019e-01  -5.87805510e-01
   -3.14991802e-01   6.13336861e-01  -3.88931543e-01  -1.32234931e-01
    3.37094516e-01  -3.61013338e-02]
 [ -5.74139953e-02  -2.41553307e-01   6.29677892e-01  -3.03351045e-01
   -2.12907150e-01   4.08777475e-01  -1.84727699e-01   8.01784158e-01
   -2.89590418e-01  -1.31060243e-01]
 [ -9.38533902e-01  -4.64731544e-01   4.31551367e-01  -1.15710628e+00
    3.99555624e-01   6.25282377e-02  -5.45562863e-01   9.72170472e-01
    9.50167894e-01  -4.11090434e-01]]
[[-0.11547117 -0.80439228  0.11451038  0.50309944 -0.30019563 -1.1382705
  -0.13883176  0.35268795  0.42450172  0.39585942]
 [-0.53948832 -0.19178453  1.28216231 -0.60023361 -0.89127797  0.39414978
  -0.35871676 -0.28811932  0.54125917 -0.27936733]
 [-0.26822233 -0.96573734  0.74621826 -0.00397989 -0.56973326 -0.66546988
   0.96247804 -0.4777337  -0.35894543  0.65702945]
 [-0.39745605 -0.59968323 -0.39711201 -0.58973676 -0.30276155  0.22022182
   0.30975568 -0.81209749 -0.28489122  0.16705149]
 [ 0.09659749  0.502536   -0.02273889  0.64361614  0.23196274 -0.5958358
   0.12962677 -1.17361665 -0.04947643 -0.68499303]
 [-0.69108975 -0.71480906 -0.07080218 -0.21542394  0.84180808 -0.85428834
  -0.1534631   0.73124099 -1.20940864 -0.36619017]
 [ 0.28682607  0.14852403 -0.04956119 -0.8882935   0.01780896 -0.54546291
  -1.08358836 -0.18123871 -0.34975377 -0.36507931]
 [ 0.43509883 -0.4532465  -0.78566456 -0.64483601 -0.5083977   0.79720926
  -0.4460105  -0.07263392  0.3688193   0.0686001 ]
 [ 0.11338323 -0.14193283  0.84829837 -0.52574992 -0.44889516  0.27381545
  -0.01408349  0.6171326  -0.52076751  0.04170418]
 [-0.76147103 -0.40853989  0.62373084 -1.35399187  0.53229725 -0.00610992
  -0.67100537  1.08361936  0.87592041 -0.22665437]]
[[-0.02244703 -0.58048356  0.19838235  0.3359836  -0.51415586 -1.33527482
  -0.16810562  0.39732072  0.36021432  0.17974243]
 [-0.75751573 -0.1806743   1.49391592 -0.45400256 -0.86167192  0.46713752
  -0.25227255 -0.4058795   0.71462095 -0.28580213]
 [-0.25774825 -0.83817911  0.68329662 -0.17186652 -0.71770036 -0.59134525
   0.84950632 -0.35582429 -0.49809867  0.79039383]
 [-0.32579586 -0.38497028 -0.57914907 -0.77414894 -0.35525644  0.3317863
   0.16898839 -1.03799677 -0.21602203  0.35772431]
 [ 0.04346921  0.38973629 -0.20688514  0.70656073  0.34411615 -0.42308733
   0.05833864 -1.25759935 -0.25829011 -0.64277494]
 [-0.70761806 -0.62675703  0.06251599 -0.19805464  0.88490993 -0.96579975
  -0.02085355  0.93646663 -1.09860718 -0.32321286]
 [ 0.21884233  0.09246342 -0.00793102 -0.92096412 -0.11627436 -0.50651193
  -1.23100162 -0.32735533 -0.43399554 -0.25312132]
 [ 0.24955012 -0.32058299 -0.63721275 -0.48620689 -0.63348961  0.91988122
  -0.56125641 -0.05290678  0.47065568 -0.01658714]
 [ 0.03744819 -0.30503678  0.7315492  -0.50815064 -0.68426627  0.24854873
  -0.19161661  0.65549713 -0.37752384  0.23299555]
 [-0.58133799 -0.63193119  0.82402235 -1.29686558  0.6422289  -0.13141347
  -0.46365744  0.91315746  0.72598255 -0.15087968]]
[[ 0.13029325 -0.71489227  0.15226817  0.46008766 -0.68660015 -1.37392914
  -0.12502018  0.21772596  0.29903883  0.0540157 ]
 [-0.96173984 -0.19382592  1.47045195 -0.38547131 -0.68283308  0.33724543
  -0.38250172 -0.3795926   0.63158792 -0.46879193]
 [-0.37916234 -0.95132232  0.85918796 -0.35951245 -0.72468519 -0.64832288
   0.73498362 -0.18271559 -0.70360744  0.98131073]
 [-0.40667212 -0.4364897  -0.49836162 -0.76562667 -0.50247955  0.13639136
   0.25203261 -0.99866748 -0.33226818  0.47004682]
 [ 0.11357866  0.50914085 -0.23693904  0.70793301  0.56204391 -0.31423652
   0.2505998  -1.45572436 -0.0759791  -0.5328086 ]
 [-0.86867177 -0.78365767  0.05592665  0.01909168  1.08765042 -0.78708088
   0.18432213  0.76097095 -1.28960598 -0.36215332]
 [ 0.03498709 -0.02845399 -0.16990608 -0.80309331 -0.29970264 -0.51812822
  -1.25349712 -0.45241278 -0.44552243 -0.43814042]
 [ 0.07835189 -0.25805783 -0.55071002 -0.46145737 -0.56178921  0.89075184
  -0.55248195 -0.05804917  0.33154327 -0.20192298]
 [-0.13241416 -0.21189556  0.74913311 -0.45734799 -0.51857615  0.42201722
  -0.03050421  0.84656608 -0.54696184  0.46543002]
 [-0.69930106 -0.79677051  0.97523993 -1.33892977  0.85994351 -0.13279699
  -0.37310094  0.94451869  0.80580586 -0.2470637 ]]
[[ 0.35619092 -0.49461517  0.15809982  0.48255226 -0.63644648 -1.21460998
  -0.30180711  0.34465837  0.15284756  0.19313961]
 [-0.82258821 -0.09063832  1.45026755 -0.51612693 -0.86417288  0.20555528
  -0.28072071 -0.40090889  0.49105823 -0.53832185]
 [-0.45923886 -1.09840322  0.73862129 -0.27909464 -0.51163316 -0.5378865
   0.61777502 -0.28685459 -0.51692116  0.76916051]
 [-0.47360498 -0.22579038 -0.49361703 -0.85468888 -0.65591758  0.10771916
   0.23351122 -1.16468835 -0.38995579  0.45692793]
 [ 0.0986549   0.6469897  -0.27305996  0.80700338  0.66459924 -0.23329008
   0.37711698 -1.29367328 -0.03364513 -0.47089413]
 [-0.94406444 -0.82773787  0.09433681 -0.05716896  0.97795904 -0.59194684
   0.13038619  0.68845785 -1.13460994 -0.23742232]
 [ 0.24948351  0.19663699 -0.2266701  -0.84205711 -0.52178824 -0.4465
  -1.06089985 -0.54404622 -0.64773059 -0.66691446]
 [-0.10469978 -0.41479826 -0.62287229 -0.4242692  -0.79728323  1.08625793
  -0.63242006  0.12694146  0.2585707  -0.07537752]
 [-0.32560486 -0.35114795  0.79354376 -0.43074778 -0.62896615  0.46641478
   0.09027579  1.04880273 -0.76580667  0.28842115]
 [-0.5700348  -0.87512445  0.98192888 -1.16464758  0.70480269 -0.10750858
  -0.21857989  1.07510626  0.61137694 -0.05688515]]

In [27]:
y_pred2 = model2.predict_classes(np.array(x_te2))
y_pred2


29/29 [==============================] - 0s
Out[27]:
array([1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1,
       1, 1, 1, 0, 1, 1], dtype=int64)

In [28]:
y_ten2 = cat2lab(y_te2)
y_ten2


Out[28]:
array([0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1,
       1, 0, 1, 1, 1, 1])

In [29]:
print(classification_report(y_ten2,y_pred2))


             precision    recall  f1-score   support

          0       0.90      0.82      0.86        11
          1       0.89      0.94      0.92        18

avg / total       0.90      0.90      0.90        29

(Temp)Cross val with CNN currently not working : cant initialize weight on interation


In [30]:
cv= StratifiedKFold(cat2lab(labels),n_folds=10,shuffle=True)
model5 = Sequential() model5.add(Convolution2D(10,10, 10, border_mode='same', input_shape=(1, 50, 50))) model5.add(Activation('relu')) # model5.add(Convolution2D(20, 10, 10,init='uniform')) # model5.add(Activation('relu')) model5.add(MaxPooling2D(pool_size=(2, 2))) model5.add(Dropout(0.5)) model5.add(Convolution2D(15, 10, 10,init='uniform' ,border_mode='same')) model5.add(Activation('relu')) # model2.add(Convolution2D(100, 5, 5,init='uniform')) # model2.add(Activation('relu')) model5.add(MaxPooling2D(pool_size=(2, 2))) model5.add(Dropout(0.25)) model5.add(Flatten()) model5.add(Dense(1250,init='uniform')) model5.add(Activation('relu')) model5.add(Dense(2,activation='softmax')) model5.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01,decay=1e-6, momentum=0.3, nesterov=True))
# score = [] # weight = [] # for layer in model5.layers: # weight.append(layer.get_weights()) # for i ,(cv_tr,cv_te) in enumerate(cv): # for j,(layer,weight) in enumerate(zip(model5.layers,weight)): # layer.set_weights(None) %time hist5 = model5.fit(x_tr2, y_tr2, nb_epoch=300 ,validation_split=0.2, batch_size = 50 ,show_accuracy=True ,shuffle=True) evals = model5.evaluate(x_te2,y_te2, batch_size= 50 ,show_accuracy=True) print(i, 'test loss : ', evals[0] , 'test acc : ' ,evals[1])
plt.figure(figsize=(25,15)) plt.plot(hist5.history['acc'],label='acc') plt.plot(hist5.history['loss'],label='loss') plt.plot(hist5.history['val_acc'],'--',label='val_acc') plt.plot(hist5.history['val_loss'],'--',label='val_loss') plt.legend() plt.ylim(0,max(hist5.history['acc'])+0.05) plt.grid('off')
acc와 validation acc가 비슷하게 가고 loss 와 val_loss 가 안정적으로 감소 하는 것을 보면 학습이 잘 되었다고 할 수있다

SVM

sample수 부족??? sample 수 늘리니 결과 향상


In [31]:
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV

In [64]:
cv = StratifiedKFold(cat2lab(labels),n_folds=8,shuffle=True)

In [65]:
params = {'C' : [1e1, 1e2, 1e3,1e4,1e5],
           'gamma' : [0.0001,0.0005,0.001,0.005,0.01]}

In [66]:
clf_grid = GridSearchCV(SVC(kernel='rbf'),params,cv=cv)

In [67]:
y_trn4 = cat2lab(y_tr1)

model4 = clf_grid.fit(imgsr,cat2lab(labels))

In [68]:
model4.best_score_ ,model4.best_params_


Out[68]:
(0.87323943661971826, {'C': 10.0, 'gamma': 0.01})

In [69]:
#demo of GridSearchCV method
svc_rslt = []
for x,y in cv: 
    clf = SVC(kernel='rbf',C=10.0,gamma = 0.01,)
    clf.fit(imgsr[x],cat2lab(labels)[x])
    svc_rslt.append(clf.score(imgsr[y], cat2lab(labels)[y]))
svc_rslt = np.array(svc_rslt)
svc_rslt


Out[69]:
array([ 1.        ,  0.86666667,  0.8       ,  0.93333333,  0.86666667,
        0.78571429,  0.78571429,  0.92307692,  0.92307692,  0.84615385])

In [70]:
print('cross valdated SVC score is ' , svc_rslt.mean())


cross valdated SVC score is  0.87304029304

In [71]:
clf.score(x_te1,cat2lab(y_te1)


  File "<ipython-input-71-1c57b083098e>", line 1
    clf.score(x_te1,cat2lab(y_te1)
                                  ^
SyntaxError: unexpected EOF while parsing

(temp)Wavelet transform


In [39]:
import pywt

In [40]:
Ca,Cd = pywt.dwt2(x_tr[25],'haar')

In [41]:
np.shape(Ca)


Out[41]:
(25L, 25L)

In [42]:
plt.imshow(Cd[1])


Out[42]:
<matplotlib.image.AxesImage at 0x3d964198>

In [43]:
plt.imshow(pywt.threshold(Cd[1],0.3))


Out[43]:
<matplotlib.image.AxesImage at 0x3be1b748>

(temp)Hough


In [44]:
from cv2 import HoughLines
from cv2 import HoughLinesP
from os import listdir
import cv2

In [ ]:


In [45]:
asdf = listdir('d://nor/')

In [46]:
ima = cv2.imread('d://nor/'+asdf[1],1)

In [47]:
imb = cv2.Canny(ima,100,250)

In [48]:
plt.imshow(imb)


Out[48]:
<matplotlib.image.AxesImage at 0x37946048>

(temp)Harr-like feature


In [49]:
from cv2 import CascadeClassifier

ensenble and randomforest


In [50]:
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier

In [51]:
ens1 = RandomForestClassifier(n_estimators =  250 , max_depth= None,verbose=1)

ens2 = AdaBoostClassifier(SVC(kernel='rbf',gamma=0.005,C = 10.0),
                          algorithm="SAMME",
                          n_estimators=100,
                          learning_rate=0.01)


ens3  = AdaBoostClassifier(DecisionTreeClassifier(max_depth=None),
                         algorithm="SAMME",
                         n_estimators=100,
                          learning_rate=0.01)

ens1.fit(x_tr1, cat2lab(y_tr1))
ens2.fit(x_tr1, cat2lab(y_tr1))
ens3.fit(x_tr1, cat2lab(y_tr1))


[Parallel(n_jobs=1)]: Done  49 tasks       | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done 199 tasks       | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 250 out of 250 | elapsed:    0.2s finished
Out[51]:
AdaBoostClassifier(algorithm='SAMME',
          base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random_state=None, splitter='best'),
          learning_rate=0.01, n_estimators=100, random_state=None)

In [52]:
ens1.score(x_te1,cat2lab(y_te1))


[Parallel(n_jobs=1)]: Done  49 tasks       | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done 199 tasks       | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done 250 out of 250 | elapsed:    0.0s finished
Out[52]:
0.68965517241379315

In [53]:
ens2.score(x_te1,cat2lab(y_te1))


Out[53]:
0.62068965517241381

In [54]:
ens3.score(x_te1,cat2lab(y_te1))


Out[54]:
0.48275862068965519

Todo