In [1]:
from sympy import init_session
init_session()


IPython console for SymPy 0.7.6 (Python 2.7.8-64-bit) (ground types: gmpy)

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
>>> init_printing()

Documentation can be found at http://www.sympy.org

Euler Equations

The Euler equations in primitive variable form, $q = (\rho, u, p)^\intercal$ appear as:

$$q_t + A(q) q_x = 0$$

with the matrix $A(q)$:

$$A(q) = \left ( \begin{array}{ccc} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \gamma p & u \end{array} \right ) $$

The sound speed is related to the adiabatic index, $\gamma$, as $c^2 = \gamma p /\rho$.

We can represent this matrix symbolically in SymPy and explore its eigensystem.


In [2]:
from sympy.abc import rho
rho, u, c = symbols('rho u c')

A = Matrix([[u, rho, 0], [0, u, rho**-1], [0, c**2 * rho, u]])
A


Out[2]:
$$\left[\begin{matrix}u & \rho & 0\\0 & u & \frac{1}{\rho}\\0 & c^{2} \rho & u\end{matrix}\right]$$

The eigenvalues are the speeds at which information propagates with. SymPy returns them as a dictionary, giving the multiplicity for each eigenvalue.


In [3]:
A.eigenvals()


Out[3]:
$$\left \{ u : 1, \quad - c + u : 1, \quad c + u : 1\right \}$$

The right eigenvectors are what SymPy gives natively. For a given eigenvalue, $\lambda$, these satisfy:

$$A r = \lambda r$$

Right Eigenvectors


In [4]:
R = A.eigenvects()   # this returns a tuple for each eigenvector with multiplicity -- unpack it
r = []
lam = []
for (ev, _, rtmp) in R:
    r.append(rtmp[0])
    lam.append(ev)
    
# we can normalize them anyway we want, so let's make the first entry 1
for n in range(len(r)):
    v = r[n]
    r[n] = v/v[0]

0-th right eigenvector


In [5]:
r[0]


Out[5]:
$$\left[\begin{matrix}1\\0\\0\end{matrix}\right]$$

this corresponds to the eigenvalue


In [6]:
lam[0]


Out[6]:
$$u$$

1-st right eigenvector


In [7]:
r[1]


Out[7]:
$$\left[\begin{matrix}1\\- \frac{c}{\rho}\\c^{2}\end{matrix}\right]$$

this corresponds to the eigenvalue


In [8]:
lam[1]


Out[8]:
$$- c + u$$

2-nd right eigenvector


In [9]:
r[2]


Out[9]:
$$\left[\begin{matrix}1\\\frac{c}{\rho}\\c^{2}\end{matrix}\right]$$

this corresponds to the eigenvalue


In [10]:
lam[2]


Out[10]:
$$c + u$$

Here they are as a matrix, $R$, in order from smallest to largest eigenvalue


In [17]:
R = zeros(3,3)
R[:,0] = r[1]
R[:,1] = r[0]
R[:,2] = r[2]
R


Out[17]:
$$\left[\begin{matrix}1 & 1 & 1\\- \frac{c}{\rho} & 0 & \frac{c}{\rho}\\c^{2} & 0 & c^{2}\end{matrix}\right]$$

Left Eigenvectors

The left eigenvectors satisfy:

$$l A = \lambda l$$

SymPy doesn't have a method to get left eigenvectors directly, so we take the transpose of this expression:

$$(l A)^\intercal = A^\intercal l^\intercal = \lambda l^\intercal$$

Therefore, the transpose of the left eigenvectors, $l^\intercal$, are the right eigenvectors of transpose of $A$


In [56]:
B = A.transpose()
B


Out[56]:
$$\left[\begin{matrix}u & 0 & 0\\\rho & u & c^{2} \rho\\0 & \frac{1}{\rho} & u\end{matrix}\right]$$

In [66]:
L = B.eigenvects()
l = []
laml = []
for (ev, _, ltmp) in L:
    l.append(ltmp[0].transpose())
    laml.append(ev)

Traditionally, we normalize these such that $l^{(\mu)} \cdot r^{(\nu)} = \delta_{\mu\nu}$


In [67]:
for n in range(len(l)):
    if lam[n] == laml[n]:
        ltmp = l[n]
        p = ltmp.dot(r[n])
        l[n] = ltmp/p

0-th left eigenvector


In [68]:
l[0]


Out[68]:
$$\left[\begin{matrix}1 & 0 & - \frac{1}{c^{2}}\end{matrix}\right]$$

1-st left eigenvector


In [69]:
l[1]


Out[69]:
$$\left[\begin{matrix}0 & - \frac{\rho}{2 c} & \frac{1}{2 c^{2}}\end{matrix}\right]$$

2-nd left eigenvector


In [70]:
l[2]


Out[70]:
$$\left[\begin{matrix}0 & \frac{\rho}{2 c} & \frac{1}{2 c^{2}}\end{matrix}\right]$$

In [ ]: