Scikit-learn propose quelques ensembles de données, notamment iris et digits (classification) et le boston house prices dataset (regression).
Exercice : en trouvez d'autres...
In [ ]:
import numpy as np
import scipy as sp
from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
boston = datasets.load_boston()
En anglais (pour correspondre aux noms des fonctions) : "We fit an estimator to the data to predict the classes to which unseen samples belong". Donc, un estimator implemente les méthode fit(X, y) et predit(T).
Le constructeur d'un estimateur accepte les paramètes du modèle. Il est également possible de changer les paramètes après création.
In [ ]:
from sklearn import svm
model = svm.SVC(gamma=0.002, C=100.)
print(model.gamma)
model.set_params(gamma=.001)
print(model.gamma)
model.fit(digits.data[:-1], digits.target[:-1])
model.predict([digits.data[-1]])
Nous pouvons regarder l'image.
cmap?
In [ ]:
import pylab as pl
%matplotlib inline
pl.imshow(digits.images[-1], cmap=pl.cm.gray_r)
À savoir (mais pour un autre jour) :
sklearn.externals.joblib est parfois plus efficaceUn estimator prend un ensemble de données, typiquement un array de dimension 2 (np.ndarray, cf. .shape).
Regardons les iris :
In [ ]:
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
Le classifieur le plus simple imagineable s'appelle kNN. Avec scikit-learn, c'est facile. (Visualisaton à suivre.)
Le nombre de dimensions peut monter très vite, ce qui pose des problèmes pour kNN.
In [ ]:
# Split iris data in train and test data
# A random permutation, to split the data randomly
np.random.seed(0)
indices = np.random.permutation(len(iris_X))
iris_X_train = iris_X[indices[:-10]]
iris_y_train = iris_y[indices[:-10]]
iris_X_test = iris_X[indices[-10:]]
iris_y_test = iris_y[indices[-10:]]
# Create and fit a nearest-neighbor classifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(iris_X_train, iris_y_train)
print(knn.predict(iris_X_test))
print(iris_y_test)
knn.score(iris_X_test, iris_y_test)
La régression logistique est un algorithm important de classification dans l'apprentissage. Le voilà sur les mêmes données :
In [ ]:
from sklearn import linear_model
logistic = linear_model.LogisticRegression(C=1e5)
logistic.fit(iris_X_train, iris_y_train)
print(logistic.predict(iris_X_test))
print(iris_y_test)
logistic.score(iris_X_test, iris_y_test)
Exercice :
In [ ]:
scores = []
for k in range(10):
indices = np.random.permutation(len(iris_X))
iris_X_train = iris_X[indices[:-10]]
iris_y_train = iris_y[indices[:-10]]
iris_X_test = iris_X[indices[-10:]]
iris_y_test = iris_y[indices[-10:]]
knn = KNeighborsClassifier()
knn.fit(iris_X_train, iris_y_train)
scores.append(knn.score(iris_X_test, iris_y_test))
print(scores)
In [ ]:
X_digits = digits.data
y_digits = digits.target
svc = svm.SVC(C=1, kernel='linear')
N = 10
X_folds = np.array_split(X_digits, N)
y_folds = np.array_split(y_digits, N)
scores = list()
for k in range(N):
# We use 'list' to copy, in order to 'pop' later on
X_train = list(X_folds)
X_test = X_train.pop(k)
X_train = np.concatenate(X_train)
y_train = list(y_folds)
y_test = y_train.pop(k)
y_train = np.concatenate(y_train)
scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
scores
Ce qu'on vient de faire s'appelle "cross validation" (validation croisée). On peut le faire plus facilement :
In [ ]:
from sklearn import model_selection
k_fold = cross_validation.KFold(n=6, n_folds=3)
for train_indices, test_indices in k_fold:
print('Train: %s | test: %s' % (train_indices, test_indices))
In [ ]:
kfold = cross_validation.KFold(len(X_digits), n_folds=N)
[svc.fit(X_digits[train], y_digits[train]).score(
X_digits[test], y_digits[test])
for train, test in kfold]
In [ ]:
cross_validation.cross_val_score(
svc, X_digits, y_digits, cv=kfold, n_jobs=-1)
En validation croisée, plus c'est grand, plus c'est bon.
À voir également :
Nous voudrions trouver quelle valeur du paramètre $C$ nous donne un bon rendu de SVM avec noyau linéaire. Pour l'instant, on ne parle ni de SVM ni des noyaux : ce sont simplement des classificateurs. L'important ici est qu'il existe un paramètre $C$ qui touche sur la qualité de nos résultats.
C'est $C$ qui gère le séparateur : marge dure ($C$ grand) ou molle (douce) ($C>0$ petit).
In [ ]:
import numpy as np
from sklearn import cross_validation, datasets, svm
digits = datasets.load_digits()
X = digits.data
y = digits.target
svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)
scores = list()
scores_std = list()
for C in C_s:
svc.C = C
this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))
# Do the plotting
import matplotlib.pyplot as plt
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.semilogx(C_s, scores)
plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--')
plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--')
locs, labels = plt.yticks()
plt.yticks(locs, list(map(lambda x: "%g" % x, locs)))
plt.ylabel('CV score')
plt.xlabel('Parameter C')
plt.ylim(0, 1.1)
plt.show()
In [ ]:
from sklearn.model_selection import GridSearchCV, cross_val_score
Cs = np.logspace(-6, -1, 10)
clf = GridSearchCV(estimator=svc, param_grid=dict(C=Cs), n_jobs=-1)
clf.fit(X_digits[:1000], y_digits[:1000])
print(clf.best_score_)
print(clf.best_estimator_.C)
# Prediction performance on test set is not as good as on train set
print(clf.score(X_digits[1000:], y_digits[1000:]))
In [ ]:
from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
logistic = linear_model.LogisticRegression()
pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])
digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target
###############################################################################
# Plot the PCA spectrum
pca.fit(X_digits)
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel('n_components')
plt.ylabel('explained_variance_')
###############################################################################
# Prediction
n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)
#Parameters of pipelines can be set using ‘__’ separated parameter names:
estimator = GridSearchCV(pipe,
dict(pca__n_components=n_components,
logistic__C=Cs))
estimator.fit(X_digits, y_digits)
plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')
plt.legend(prop=dict(size=12))
In [ ]:
"""
===================================================
Faces recognition example using eigenfaces and SVMs
===================================================
The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the Wild", aka LFW_:
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)
.. _LFW: http://vis-www.cs.umass.edu/lfw/
Expected results for the top 5 most represented people in the dataset:
================== ============ ======= ========== =======
precision recall f1-score support
================== ============ ======= ========== =======
Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60
Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146
Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36
avg / total 0.80 0.80 0.80 322
================== ============ ======= ========== =======
"""
from __future__ import print_function
from time import time
import logging
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC
print(__doc__)
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
###############################################################################
# Download the data, if not already on disk and load it as numpy arrays
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape
# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]
# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]
print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)
###############################################################################
# Split into a training set and a test set using a stratified k fold
# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.25, random_state=42)
###############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150
print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))
t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',
whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))
eigenfaces = pca.components_.reshape((n_components, h, w))
print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))
###############################################################################
# Train a SVM classification model
print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)
###############################################################################
# Quantitative evaluation of the model quality on the test set
print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))
print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
###############################################################################
# Qualitative evaluation of the predictions using matplotlib
def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):
plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())
# plot the result of the prediction on a portion of the test set
def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)
prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]
plot_gallery(X_test, prediction_titles, h, w)
# plot the gallery of the most significative eigenfaces
eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)
plt.show()