In [ ]:
import sys
print(sys.version)
In [ ]:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import time
import pandas as pd
import seaborn as sns
In [ ]:
import sys
sys.path.append('../code/')
In [ ]:
from pca import Pca, make_image
In [ ]:
from classification_base import MNIST_PATH
from mnist_helpers import mnist_training, mnist_testing
In [ ]:
train_X, train_y = mnist_training(shuffled=True)
#test_X, test_y = mnist_testing(shuffled=True)
In [ ]:
eigenvectors = np.load("./data/Q-1-2_eigenvectors.npy")
sigma = np.load("./data/Q-1-2_sigma.npy")
In [ ]:
# Show two native numbers.
make_image(train_X[1,:])
make_image(train_X[2,:])
In [ ]:
from sklearn.decomposition import PCA
pca = PCA(n_components=10)
pca.fit(train_X)
make_image(pca.components_[1,:])
In [ ]:
make_image(eigenvectors[:,0])
In [ ]:
make_image(eigenvectors[:,1])
In [ ]:
# Loop over first 10 eigenvectors and save them.
for i in range(0, 10):
make_image(eigenvectors[:,i], "../figures/eigenvectors/ev_{}.png".format(i))
make_image(eigenvectors[:,i], "ev_{}.png".format(i))
In [ ]:
# convert +append a.png b.png c.png
!convert +append ev_0.png ev_1.png ev_2.png ev_3.png ev_4.png ev_5.png ev_6.png ev_7.png ev_8.png ev_9.png ../figures/eigenvectors.jpg
In [ ]:
! rm ev_*.png
In [ ]: