In [75]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit # import the curve fitting function
%matplotlib inline
In [76]:
CS137Peaks = np.array([165.85]) #Channel Number of photopeak
CS137Energy = np.array([661.7]) #Accepted value of emission energy
In [77]:
BA133Peaks = np.array([21.59, 76.76, 90.52])
BA133Energy = np.array([81.0, 302.9, 356.0])
In [78]:
Mn54Peaks = np.array([207.72])
Mn54Energy = np.array([834.8])
In [79]:
Na22Peaks = np.array([128.84])
Na22Energy = np.array([511.0])
In [80]:
CO57Peaks = np.array([31.98])
CO57Energy = np.array([122.1])
In [81]:
Peaks = np.hstack([CS137Peaks,BA133Peaks,Mn54Peaks,Na22Peaks,CO57Peaks])
In [82]:
Energy = np.hstack([CS137Energy,BA133Energy,Mn54Energy,Na22Energy,CO57Energy])
In [83]:
plt.figure(figsize=(10,6));
plt.scatter(Peaks,Energy);
plt.xlabel('MCA Number',fontsize=20);
plt.ylabel('Energy (keV)',fontsize = 20);
plt.xticks(size = 13);
plt.yticks(size = 13);
#plt.savefig('Sample')
In [84]:
def myfun(N,a,b,c):
ans = a + b*N + c*N**2 # this is y, "the function to be fit"
return ans
In [85]:
p0 = [-2,1,0]
In [86]:
xlots = np.linspace(0,240) # need lots of data points for smooth curve
yfit = np.zeros((len(Peaks),xlots.size))
plsq, pcov = curve_fit(myfun, Peaks, Energy, p0) # curve fit returns p and covariance matrix
# these give the parameters and the uncertainties
a = plsq[0]
da = np.sqrt(pcov[0,0])
b = plsq[1]
db = np.sqrt(pcov[1,1])
c = plsq[2]
dc = np.sqrt(pcov[2,2])
yfit = myfun(xlots,plsq[0],plsq[1],plsq[2]) # use fit results for a, b, c
print('a = %.7f +/- %.7f' % (plsq[0], np.sqrt(pcov[0,0])))
print('b = %.7f +/- %.7f' % (plsq[1], np.sqrt(pcov[1,1])))
print('c = %.7f +/- %.7f' % (plsq[2], np.sqrt(pcov[2,2])))
In [87]:
plt.figure(figsize=(10,6));
plt.scatter(Peaks,Energy);
plt.xlim(0,240)
plt.ylim(0,1000)
plt.xlabel('x (mm)');
plt.ylabel('y (mm)');
plt.plot(xlots,yfit);
plt.legend(['data','Fit'],loc='lower right');
plt.text(5,900,'a = %.1f +/- %.1f keV' % (plsq[0], np.sqrt(pcov[0,0])),size=17)
plt.text(5,800,'b = %.2f +/- %.2f keV MCA$^{-1}$' % (plsq[1], np.sqrt(pcov[1,1])),size=17)
plt.text(5,700,'c = %.1f +/- %.1f keV MCA$^{-2}$' % (plsq[2]*1e3, np.sqrt(pcov[2,2])*1e3),size=17)
plt.xlabel('MCA Number',fontsize=20);
plt.ylabel('Energy (keV)',fontsize = 20);
plt.xticks(size = 13);
plt.yticks(size = 13);
plt.savefig('LinearMCAFit')
In [88]:
N = np.array([102.20, 85.85, 121.57, 140.34, 127.77, 115.69]) #Photopeak channel of scattered rays
dN = np.array([5.37, 8.01, 5.13, 5.54, 8.91, 5.5]) #Uncertainty in channel number
theta = np.array([60, 75, 45, 30, 40, 50])*np.pi/180 #Scattering angle entered in degrees converted to radians afterwords
In [89]:
def deltaE(N,dN):
daN = np.sqrt((da/a)**2 + (dN/N)**2)*(a*N)
dbN2 = np.sqrt((db/b)**2 + 4*(dN/N)**2)*(b*N**2)
dcN3 = np.sqrt((dc/c**2) + 9*(dN/N)**2)*(c*N**3)
dEMeas = np.sqrt(daN**2 + dbN2**2 + dcN3**2)*1e-3 #Convert to KeV
return dEMeas
In [90]:
EMeas = myfun(N,a,b,c)
EMeas
Out[90]:
In [91]:
dEMeas = deltaE(N,dN)
dEMeas
Out[91]:
In [92]:
Eo = 661.7 #Initial keV energy of gamma rays (before scattering)
mc2 = 511 #electron mass in keV
In [93]:
def ECompton(Eo,mc2,theta):
return Eo/(1+(Eo/mc2)*(1-np.cos(theta)))
In [94]:
EComp = ECompton(Eo,mc2,theta)
EComp
Out[94]:
In [95]:
thetas = np.linspace(0,np.pi,50);
plt.figure(figsize=(10,6));
plt.plot(thetas,ECompton(Eo,mc2,thetas),label='Compton');
plt.errorbar(theta,EMeas,yerr = dEMeas,fmt='none');
plt.scatter(theta,EMeas,label='Measured',color='k');
plt.legend();
plt.xlabel('Scattering Angle [Radians]',fontsize=20);
plt.ylabel('Final Energy (keV)',fontsize = 20);
plt.xticks(size = 13);
plt.yticks(size = 13);
plt.xlim(0,np.pi);
plt.savefig('ComptonEnergy')
In [96]:
y = np.array([1/entry for entry in EMeas])
dy = np.array([dEMeas[i]/EMeas[i]**2 for i in np.arange(len(EMeas))])
In [97]:
x = np.array([1-np.cos(entry) for entry in theta])
In [98]:
plt.figure(figsize=(10,6));
plt.scatter(x + 1/Eo,y);
plt.errorbar(x + 1/Eo,y,dy,fmt='none')
plt.xlabel('(1-cos(theta))',fontsize=20);
plt.ylabel('(1/Ef)',fontsize = 20);
plt.xticks(size = 13);
plt.yticks(size = 13);
plt.ylim(0.0015,0.0035);
In [99]:
def myfun2(x,mc2):
# x = (1-np.cos(theta))
return 1/Eo + (1/mc2)*x
In [100]:
p02 = [511]
In [101]:
xlots2 = np.linspace(0,1) # need lots of data points for smooth curve
yfit = np.zeros((len(Peaks),xlots2.size))
plsq, pcov = curve_fit(myfun2, np.array([1-np.cos(entry) for entry in theta]), np.array([1/entry for entry in EMeas]), p02) # curve fit returns p and covariance matrix
# these give the parameters and the uncertainties
mc2Meas = plsq[0]
dmc2Meas = np.sqrt(pcov[0,0])
yfit2 = myfun2(xlots2,plsq[0]) # use fit results for a, b, c
print('mc2Meas = (%.1f +/- %.1f) keV/c2' % (plsq[0], np.sqrt(pcov[0,0])))
In [102]:
plt.figure(figsize=(10,6));
plt.scatter(x + 1/Eo,y,label='Measured');
plt.errorbar(x + 1/Eo,y,dy,fmt='none')
plt.plot(xlots2,yfit2,label='Fit')
plt.legend(loc='upper left')
plt.xlabel('(1-cos(theta))',fontsize=20);
plt.ylabel('(1/$E_f$)',fontsize = 20);
plt.xticks(size = 13);
plt.yticks(size = 13);
plt.ylim(0.0015,0.0031);
plt.xlim(0,0.81)
plt.text(0.01,0.0027,'$mc^2$ = (%.0f +/- %.0f) keV/$c^2$' % (plsq[0], np.sqrt(pcov[0,0])),size=17)
plt.savefig('ElectronMass')
In [176]:
EMeas #For determining efficiency from manual
Out[176]:
In [160]:
Counts = np.array([2446, 1513, 3357, 3231, 1285, 1944])
#This is the detector efficiency which is a function of the incoming gamma energy (EMeas)
e = np.array([0.6, 0.67, 0.52, 0.475, 0.51, 0.55])
Counts = np.array([Counts[i]/e[i] for i in np.arange(len(Counts))])
unc = np.array([np.sqrt(entry) for entry in Counts])
Time = np.array([1531.76, 1952.72, 1970.43, 629.12, 663.42, 750.65])
Rates = np.array([Counts[i]/Time[i] for i in np.arange(len(Counts))])
unc = np.array([unc[i]/Time[i] for i in np.arange(len(Counts))])
In [172]:
def Thomson(theta):
ro = 2.82*1e-15
return (1/2)*(ro**2)*(1+np.cos(theta)**2)*1.20e30 #set b = 1
In [173]:
def KleinNishina(theta):
ro = 2.82*1e-15
gamma = Eo/mc2
return (1/2)*(ro**2)*(1+np.cos(theta)**2)*((1+gamma*(1-np.cos(theta)))**(-2))*(1+((gamma*(1-np.cos(theta)))**2)/((1+np.cos(theta)**2)*(1+gamma*(1-np.cos(theta)))))*1.20e30
In [177]:
thetas = np.linspace(0,np.pi/2,50);
plt.figure(figsize=(10,6));
plt.plot(thetas,Thomson(thetas),label='Thomson');
plt.plot(thetas,KleinNishina(thetas),label='Klein-Nishina');
plt.scatter(theta,Rates,label='Measured',marker = '.',color='red')
plt.errorbar(theta,Rates,unc,fmt='none')
plt.legend();
plt.xlabel('Scattering Angle [Radians]',fontsize=20);
plt.ylabel('Count Rate [$s^{-1}$]',fontsize = 20);
plt.xticks(size = 13);
plt.yticks(size = 13);
plt.xlim(0,np.pi/2);
plt.savefig('ThomsonKleinNishina')
In [ ]: