In [1]:
# Import TensorFlow library:
import tensorflow as tf
# Import matplotlib and numpy libraries (used to show image):
%matplotlib inline
from matplotlib.pyplot import imshow
import numpy as np
Feeding Data from Python Code:
In [2]:
# Create python list constants:
constantX = [ 1.0, 2.0, 3.0 ]
constantY = [ 10.0, 20.0, 30.0 ]
# Create addition operation (for constants):
addConstants = tf.add( constantX, constantY )
# Create session:
with tf.Session() as sess:
# Run session on constants and print output:
print sess.run( addConstants )
# Create placeholders:
placeholderX = tf.placeholder( tf.float32 )
placeholderY = tf.placeholder( tf.float32 )
# Create addition operation (for placeholders):
addPlaceholders = tf.add( placeholderX, placeholderY )
# Create session:
with tf.Session() as sess:
# Run session on placeholders and print output:
print sess.run( addPlaceholders, feed_dict={ placeholderX: constantX, placeholderY: constantY } )
Loading Data from File:
In [3]:
# Define file-reader function:
def read_file(filepath):
file_queue = tf.train.string_input_producer( [ filepath ] )
file_reader = tf.WholeFileReader()
_, contents = file_reader.read( file_queue )
return contents
# Create PNG image loader operation:
load_op = tf.image.decode_png( read_file( 'data/tf.png' ) )
# Create JPG image loader operation:
# load_op = tf.image.decode_jpg( read_file( 'data/myimage.jpg' ) )
# Create session:
with tf.Session() as sess:
# Initialize global variables:
sess.run( tf.global_variables_initializer() )
# Start queue coordinator:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners( coord=coord )
# Run session on image loader op:
image = sess.run( load_op )
# Terminate queue coordinator:
coord.request_stop()
coord.join( threads )
# Show image:
imshow( np.asarray( image ) )
In [ ]: