In [6]:
    
for i in range(10):
   y = i*40 +i**2 + 2
   print(y)
    
i = i+2
    
    
In [7]:
    
range(10)
    
    Out[7]:
In [8]:
    
for i in ["a","b","tt"]:
    print i
    
    
In [20]:
    
x = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],[2, 1, 2, 3, 4, 5, 6, 7, 8, 9],[0,5, 2, 3, 4, 5, 6, 7, 8, 9]]
print(x)
    
    
In [23]:
    
np.mean(x)
    
    Out[23]:
In [24]:
    
x= np.linspace(-1,1,100)
    
In [25]:
    
x
    
    Out[25]:
In [29]:
    
x[[34,67]]
    
    Out[29]:
In [30]:
    
x[45:90]
    
    Out[30]:
In [31]:
    
x[::3]
    
    Out[31]:
In [32]:
    
x[10::3]
    
    Out[32]:
In [33]:
    
x[::-1]
    
    Out[33]:
In [34]:
    
x= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
In [35]:
    
x[::-1]
    
    Out[35]:
In [37]:
    
y = np.linspace(0,10,100)
x= np.linspace(-1,1,100)
    
In [38]:
    
x
    
    Out[38]:
careful with "=":
In [47]:
    
xx = x.copy()
    
In [48]:
    
xx+=2
    
In [49]:
    
xx
    
    Out[49]:
In [50]:
    
x
    
    Out[50]:
In [52]:
    
xlist = [3,4,5,6,7,8,9]
xarray = np.asarray([3,4,5,6,7,8,9]) # np.asarray(xlist)
    
In [53]:
    
xlist*2
    
    Out[53]:
In [54]:
    
xarray*2
    
    Out[54]:
In [56]:
    
strangelist = ["toto",3,{},[]]
    
In [60]:
    
np.asarray(strangelist)*2
    
    
In [64]:
    
x
    
    Out[64]:
In [65]:
    
mask = x>2
    
In [66]:
    
mask
    
    Out[66]:
In [68]:
    
x[mask] # x[x>2]
    
    Out[68]:
In [76]:
    
x[ (x>2) & (x<2.5)  ] # x[ (x>2) * (x>1.5)  ] # both have to be true
    
    Out[76]:
In [75]:
    
x[ (x>2) | (x>1.5)  ] # x[ (x>2) + (x>1.5)  ] # any have to be true
    
    Out[75]:
In [78]:
    
iamnan = np.NaN
    
In [79]:
    
iamnan
    
    Out[79]:
In [80]:
    
iamnan==iamnan
    
    Out[80]:
In [82]:
    
np.inf==np.inf
    
    Out[82]:
In [83]:
    
xwithnan = np.asarray([3,4,5,6,7,2,3,np.NaN,75,75])
    
In [84]:
    
xwithnan
    
    Out[84]:
In [85]:
    
xwithnan*2
    
    Out[85]:
In [86]:
    
4+np.NaN
    
    Out[86]:
In [87]:
    
4/np.NaN
    
    Out[87]:
In [88]:
    
4**np.NaN
    
    Out[88]:
In [89]:
    
np.mean(xwithnan)
    
    Out[89]:
In [90]:
    
np.nanmean(xwithnan)
    
    Out[90]:
In [91]:
    
np.mean(xwithnan[xwithnan==xwithnan])
    
    Out[91]:
In [96]:
    
~(xwithnan==xwithnan)
    
    Out[96]:
In [93]:
    
xwithnan!=xwithnan
    
    Out[93]:
In [97]:
    
np.isnan(xwithnan)
    
    Out[97]:
In [98]:
    
xwithnan = [3,4,5,6,7,2,3,np.NaN,75,75]
    
In [100]:
    
xwithnan[xwithnan==xwithnan]
    
    Out[100]:
In [105]:
    
0 == False
    
    Out[105]:
In [ ]:
    
1 == True
    
In [117]:
    
a = np.random.rand(30)
b = np.random.rand(30)
    
In [118]:
    
# plot within the notebook
%matplotlib inline
import matplotlib.pyplot as mpl
    
In [119]:
    
pl = mpl.hist(a)
    
    
In [126]:
    
mpl.scatter(a,b,s=150, facecolors="None", edgecolors="b",lw=3)
    
    Out[126]:
    
In [ ]: