Learning Objectives
While Pandas is fine for experimenting, for operationalization of your workflow it is better to do preprocessing in Apache Beam. This will also help if you need to preprocess data in flight, since Apache Beam allows for streaming. In this lab we will pull data from BigQuery then use Apache Beam TfTransform to process the data.
Only specific combinations of TensorFlow/Beam are supported by tf.transform so make sure to get a combo that works. In this lab we will be using:
NOTE: In the output of the next cell you may ignore any WARNINGS or ERRORS related to the following: "witwidget-gpu", "fairing", "pbr, "hdfscli", "hdfscli-avro", "fastavro", "plasma_store", and/or "gen_client".
In [ ]:
!sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst
In [ ]:
!pip install tensorflow==2.1.0
In [ ]:
!pip install --user apache-beam[gcp]==2.16.0
!pip install --user tensorflow-transform==0.15.0
Download .whl file for tensorflow-transform. We will pass this file to Beam Pipeline Options so it is installed on the DataFlow workers
In [ ]:
!pip download tensorflow-transform==0.15.0 --no-deps
Restart the kernel
In [ ]:
# Ensure the right version of Tensorflow is installed.
!pip freeze | grep tensorflow==2.1
In [ ]:
%%bash
pip freeze | grep -e 'flow\|beam'
In [ ]:
import tensorflow as tf
import tensorflow_transform as tft
import shutil
print(tf.__version__)
In [15]:
# change these to those of your environment to try this notebook out
BUCKET = 'cloud-training-demos-ml'
PROJECT = 'cloud-training-demos'
REGION = 'us-central1'
In [ ]:
import os
os.environ['BUCKET'] = BUCKET
os.environ['PROJECT'] = PROJECT
os.environ['REGION'] = REGION
In [ ]:
%%bash
gcloud config set project $PROJECT
gcloud config set compute/region $REGION
In [ ]:
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/; then
gsutil mb -l ${REGION} gs://${BUCKET}
fi
In [ ]:
from google.cloud import bigquery
def create_query(phase, EVERY_N):
"""Creates a query with the proper splits.
Args:
phase: int, 1=train, 2=valid.
EVERY_N: int, take an example EVERY_N rows.
Returns:
Query string with the proper splits.
"""
base_query = """
WITH daynames AS
(SELECT ['Sun', 'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat'] AS daysofweek)
SELECT
(tolls_amount + fare_amount) AS fare_amount,
daysofweek[ORDINAL(EXTRACT(DAYOFWEEK FROM pickup_datetime))] AS dayofweek,
EXTRACT(HOUR FROM pickup_datetime) AS hourofday,
pickup_longitude AS pickuplon,
pickup_latitude AS pickuplat,
dropoff_longitude AS dropofflon,
dropoff_latitude AS dropofflat,
passenger_count AS passengers,
'notneeded' AS key
FROM
`nyc-tlc.yellow.trips`, daynames
WHERE
trip_distance > 0 AND fare_amount > 0
"""
if EVERY_N is None:
if phase < 2:
# training
query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST
(pickup_datetime AS STRING), 4)) < 2""".format(base_query)
else:
query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST(
pickup_datetime AS STRING), 4)) = {1}""".format(base_query, phase)
else:
query = """{0} AND ABS(MOD(FARM_FINGERPRINT(CAST(
pickup_datetime AS STRING)), {1})) = {2}""".format(
base_query, EVERY_N, phase)
return query
query = create_query(2, 100000)
Let's pull this query down into a Pandas DataFrame and take a look at some of the statistics.
In [ ]:
df_valid = bigquery.Client().query(query).to_dataframe()
display(df_valid.head())
df_valid.describe()
In [ ]:
OUTDIR = './trained_model'
shutil.rmtree(OUTDIR, ignore_errors = True)
tf.compat.v1.summary.FileWriterCache.clear()
Let's use Cloud Dataflow to read in the BigQuery data and write it out as TFRecord files. Along the way, let's use tf.transform to do scaling and transforming. Using tf.transform allows us to save the metadata to ensure that the appropriate transformations get carried out during prediction as well.
NOTE: You may ignore any WARNING related to "tensorflow" in the output after executing the code cell below.
transformed_data
is type pcollection
.
In [ ]:
import datetime
import tensorflow as tf
import apache_beam as beam
import tensorflow_transform as tft
import tensorflow_metadata as tfmd
from tensorflow_transform.beam import impl as beam_impl
def is_valid(inputs):
"""Check to make sure the inputs are valid.
Args:
inputs: dict, dictionary of TableRow data from BigQuery.
Returns:
True if the inputs are valid and False if they are not.
"""
try:
pickup_longitude = inputs['pickuplon']
dropoff_longitude = inputs['dropofflon']
pickup_latitude = inputs['pickuplat']
dropoff_latitude = inputs['dropofflat']
hourofday = inputs['hourofday']
dayofweek = inputs['dayofweek']
passenger_count = inputs['passengers']
fare_amount = inputs['fare_amount']
return fare_amount >= 2.5 and pickup_longitude > -78 \
and pickup_longitude < -70 and dropoff_longitude > -78 \
and dropoff_longitude < -70 and pickup_latitude > 37 \
and pickup_latitude < 45 and dropoff_latitude > 37 \
and dropoff_latitude < 45 and passenger_count > 0
except:
return False
def preprocess_tft(inputs):
"""Preproccess the features and add engineered features with tf transform.
Args:
dict, dictionary of TableRow data from BigQuery.
Returns:
Dictionary of preprocessed data after scaling and feature engineering.
"""
import datetime
print(inputs)
result = {}
result['fare_amount'] = tf.identity(inputs['fare_amount'])
# build a vocabulary
result['dayofweek'] = tft.string_to_int(inputs['dayofweek'])
result['hourofday'] = tf.identity(inputs['hourofday']) # pass through
# scaling numeric values
result['pickuplon'] = (tft.scale_to_0_1(inputs['pickuplon']))
result['pickuplat'] = (tft.scale_to_0_1(inputs['pickuplat']))
result['dropofflon'] = (tft.scale_to_0_1(inputs['dropofflon']))
result['dropofflat'] = (tft.scale_to_0_1(inputs['dropofflat']))
result['passengers'] = tf.cast(inputs['passengers'], tf.float32) # a cast
# arbitrary TF func
result['key'] = tf.as_string(tf.ones_like(inputs['passengers']))
# engineered features
latdiff = inputs['pickuplat'] - inputs['dropofflat']
londiff = inputs['pickuplon'] - inputs['dropofflon']
result['latdiff'] = tft.scale_to_0_1(latdiff)
result['londiff'] = tft.scale_to_0_1(londiff)
dist = tf.sqrt(latdiff * latdiff + londiff * londiff)
result['euclidean'] = tft.scale_to_0_1(dist)
return result
def preprocess(in_test_mode):
"""Sets up preprocess pipeline.
Args:
in_test_mode: bool, False to launch DataFlow job, True to run locally.
"""
import os
import os.path
import tempfile
from apache_beam.io import tfrecordio
from tensorflow_transform.coders import example_proto_coder
from tensorflow_transform.tf_metadata import dataset_metadata
from tensorflow_transform.tf_metadata import dataset_schema
from tensorflow_transform.beam import tft_beam_io
from tensorflow_transform.beam.tft_beam_io import transform_fn_io
job_name = 'preprocess-taxi-features' + '-'
job_name += datetime.datetime.now().strftime('%y%m%d-%H%M%S')
if in_test_mode:
import shutil
print('Launching local job ... hang on')
OUTPUT_DIR = './preproc_tft'
shutil.rmtree(OUTPUT_DIR, ignore_errors=True)
EVERY_N = 100000
else:
print('Launching Dataflow job {} ... hang on'.format(job_name))
OUTPUT_DIR = 'gs://{0}/taxifare/preproc_tft/'.format(BUCKET)
import subprocess
subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split())
EVERY_N = 10000
options = {
'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'),
'temp_location': os.path.join(OUTPUT_DIR, 'tmp'),
'job_name': job_name,
'project': PROJECT,
'num_workers': 1,
'max_num_workers': 1,
'teardown_policy': 'TEARDOWN_ALWAYS',
'no_save_main_session': True,
'direct_num_workers': 1,
'extra_packages': ['tensorflow-transform-0.15.0.tar.gz']
}
opts = beam.pipeline.PipelineOptions(flags=[], **options)
if in_test_mode:
RUNNER = 'DirectRunner'
else:
RUNNER = 'DataflowRunner'
# Set up raw data metadata
raw_data_schema = {
colname: dataset_schema.ColumnSchema(
tf.string, [], dataset_schema.FixedColumnRepresentation())
for colname in 'dayofweek,key'.split(',')
}
raw_data_schema.update({
colname: dataset_schema.ColumnSchema(
tf.float32, [], dataset_schema.FixedColumnRepresentation())
for colname in
'fare_amount,pickuplon,pickuplat,dropofflon,dropofflat'.split(',')
})
raw_data_schema.update({
colname: dataset_schema.ColumnSchema(
tf.int64, [], dataset_schema.FixedColumnRepresentation())
for colname in 'hourofday,passengers'.split(',')
})
raw_data_metadata = dataset_metadata.DatasetMetadata(
dataset_schema.Schema(raw_data_schema))
# Run Beam
with beam.Pipeline(RUNNER, options=opts) as p:
with beam_impl.Context(temp_dir=os.path.join(OUTPUT_DIR, 'tmp')):
# Save the raw data metadata
(raw_data_metadata |
'WriteInputMetadata' >> tft_beam_io.WriteMetadata(
os.path.join(
OUTPUT_DIR, 'metadata/rawdata_metadata'), pipeline=p))
# Read training data from bigquery and filter rows
raw_data = (p | 'train_read' >> beam.io.Read(
beam.io.BigQuerySource(
query=create_query(1, EVERY_N),
use_standard_sql=True)) |
'train_filter' >> beam.Filter(is_valid))
raw_dataset = (raw_data, raw_data_metadata)
# Analyze and transform training data
transformed_dataset, transform_fn = (
raw_dataset | beam_impl.AnalyzeAndTransformDataset(
preprocess_tft))
transformed_data, transformed_metadata = transformed_dataset
# Save transformed train data to disk in efficient tfrecord format
transformed_data | 'WriteTrainData' >> tfrecordio.WriteToTFRecord(
os.path.join(OUTPUT_DIR, 'train'), file_name_suffix='.gz',
coder=example_proto_coder.ExampleProtoCoder(
transformed_metadata.schema))
# Read eval data from bigquery and filter rows
raw_test_data = (p | 'eval_read' >> beam.io.Read(
beam.io.BigQuerySource(
query=create_query(2, EVERY_N),
use_standard_sql=True)) | 'eval_filter' >> beam.Filter(
is_valid))
raw_test_dataset = (raw_test_data, raw_data_metadata)
# Transform eval data
transformed_test_dataset = (
(raw_test_dataset, transform_fn) | beam_impl.TransformDataset()
)
transformed_test_data, _ = transformed_test_dataset
# Save transformed train data to disk in efficient tfrecord format
(transformed_test_data |
'WriteTestData' >> tfrecordio.WriteToTFRecord(
os.path.join(OUTPUT_DIR, 'eval'), file_name_suffix='.gz',
coder=example_proto_coder.ExampleProtoCoder(
transformed_metadata.schema)))
# Save transformation function to disk for use at serving time
(transform_fn |
'WriteTransformFn' >> transform_fn_io.WriteTransformFn(
os.path.join(OUTPUT_DIR, 'metadata')))
# Change to True to run locally
preprocess(in_test_mode=False)
This will take 10-15 minutes. You cannot go on in this lab until your DataFlow job has succesfully completed.
You may monitor the progress of the Dataflow job in the GCP console on the Dataflow page.
When you see the Jupyter notebook status has returned to "Idle" you may proceed to the next step.
In [ ]:
%%bash
# ls preproc_tft
gsutil ls gs://${BUCKET}/taxifare/preproc_tft/
In [ ]:
%%bash
rm -r ./taxi_trained
export PYTHONPATH=${PYTHONPATH}:$PWD
python3 -m tft_trainer.task \
--train_data_path="gs://${BUCKET}/taxifare/preproc_tft/train*" \
--eval_data_path="gs://${BUCKET}/taxifare/preproc_tft/eval*" \
--output_dir=./taxi_trained \
NOTE: If you get any directory not found error then you may need to rerun the above cell.
In [ ]:
!ls $PWD/taxi_trained/export/exporter
Now let's create fake data in JSON format and use it to serve a prediction with gcloud ai-platform local predict
In [ ]:
%%writefile /tmp/test.json
{"dayofweek":0, "hourofday":17, "pickuplon": -73.885262, "pickuplat": 40.773008, "dropofflon": -73.987232, "dropofflat": 40.732403, "passengers": 2.0}
In [ ]:
%%bash
sudo find "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/command_lib/ml_engine" -name '*.pyc' -delete
In [ ]:
%%bash
model_dir=$(ls $PWD/taxi_trained/export/exporter/)
gcloud ai-platform local predict \
--model-dir=./taxi_trained/export/exporter/${model_dir} \
--json-instances=/tmp/test.json
Copyright 2020 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License