Copyright 2018 Google LLC

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0  

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.


In [ ]:
# Only for when running on Colab:
import sys
if 'google.colab' in sys.modules:
    # Get the dependency .py files, if any.
    ! git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git
    ! cp cloudml-samples/tpu/templates/tpu_rewrite/* .

    # Authenticate the user for better GCS access.
    # Copy verification code into the text field to continue.
    from google.colab import auth
    auth.authenticate_user()

In [ ]:
import argparse
import numpy as np
import os
import tensorflow as tf
from tensorflow.contrib.cluster_resolver import TPUClusterResolver

In [ ]:
def tpu_computation(features, labels):
    # Similar to the role of model_fn, the TPU function builds the part of the graph to be run on TPUs

    # build model
    hidden = tf.layers.dense(features, 10, activation=tf.nn.relu)
    outputs = tf.layers.dense(hidden, 1)
    loss = tf.nn.l2_loss(outputs - labels)

    optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)

    # Wrap the optimizer
    optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)

    global_step = tf.train.get_or_create_global_step()
    train_op = optimizer.minimize(loss, global_step=global_step) 

    # TPU functions must return zero-or more Tensor values followed by zero or more Operations.
    return global_step, loss, train_op

In [ ]:
def train_input_fn():
    # data input function runs on the CPU, not TPU

    # make some fake regression data
    x = np.random.rand(100, 5)
    w = np.random.rand(5)
    y = np.sum(x * w, axis=1)

    # TPUs currently do not support float64
    x_tensor = tf.constant(x, dtype=tf.float32)
    y_tensor = tf.constant(y, dtype=tf.float32)

    # create tf.data.Dataset
    dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))

    # TPUs need to know all dimensions including batch size
    batch_size = 16

    dataset = dataset.repeat().shuffle(32).batch(batch_size)#, drop_remainder=True)

    # TPUs need to know all dimensions when the graph is built
    # Datasets know the batch size only when the graph is run
    def set_shapes(features, labels):
        features_shape = features.get_shape().merge_with([batch_size, None])
        labels_shape = labels.get_shape().merge_with([batch_size])

        features.set_shape(features_shape)
        labels.set_shape(labels_shape)

        return features, labels

    dataset = dataset.map(set_shapes)
    dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)

    return dataset

In [ ]:
def main(args):
    # unpack the tensor batch to be used as the list of inputs of the TPU function
    dataset = train_input_fn()
    iterator = dataset.make_one_shot_iterator()
    features, labels = iterator.get_next()

    # mark part of the graph to be run on the TPUs
    global_step_tensor, loss_tensor = tf.contrib.tpu.rewrite(tpu_computation, [features, labels])

    # utility ops
    tpu_init = tf.contrib.tpu.initialize_system()
    tpu_shutdown = tf.contrib.tpu.shutdown_system()
    variables_init = tf.global_variables_initializer()

    saver = tf.train.Saver()

    # get the TPU resource's grpc url
    # Note: when running on AI Platform, args.tpu should be left as None
    tpu_grpc_url = TPUClusterResolver(tpu=args.tpu).get_master()
    sess = tf.Session(tpu_grpc_url)

    sess.run(tpu_init)
    sess.run(variables_init)

    for i in range(args.max_steps):
        # the tensor values in the TPU function are returned in a list, and the operations in the TPU function are called with no return value
        global_step, loss = sess.run([global_step_tensor, loss_tensor])

        if i % args.save_checkpoints_steps == 0:
            saver.save(sess, os.path.join(args.model_dir, 'model.ckpt'), global_step=global_step)

            tf.logging.info('global_step: {}, loss: {}'.format(global_step, loss))

    sess.run(tpu_shutdown)

In [ ]:
parser = argparse.ArgumentParser()

parser.add_argument(
    '--model-dir',
    type=str,
    default='/tmp/tpu-template',
    help='Location to write checkpoints and summaries to.  Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
    '--max-steps',
    type=int,
    default=1000,
    help='The total number of steps to train the model.')
parser.add_argument(
    '--save-checkpoints-steps',
    type=int,
    default=100,
    help='The number of training steps before saving each checkpoint.')
parser.add_argument(
    '--tpu',
    default=None,
    help='The name or GRPC URL of the TPU node.  Leave it as `None` when training on AI Platform.')

args, _ = parser.parse_known_args()

In [ ]:
# colab.research.google.com specific
if 'google.colab' in sys.modules:
    import json
    import os

    # TODO(user): change this
    args.model_dir = 'gs://your-gcs-bucket'

    # When connected to the TPU runtime
    if 'COLAB_TPU_ADDR' in os.environ:
        tpu_grpc = 'grpc://{}'.format(os.environ['COLAB_TPU_ADDR'])

        args.tpu = tpu_grpc
        args.use_tpu = True

        # Upload credentials to the TPU
        with tf.Session(tpu_grpc) as sess:
            data = json.load(open('/content/adc.json'))
            tf.contrib.cloud.configure_gcs(sess, credentials=data)

In [ ]:
main(args)