Copyright 2018 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
In [ ]:
# Only for when running on Colab:
import sys
if 'google.colab' in sys.modules:
# Get the dependency .py files, if any.
! git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git
! cp cloudml-samples/tpu/templates/tpu_lstm_keras/* .
# Authenticate the user for better GCS access.
# Copy verification code into the text field to continue.
from google.colab import auth
auth.authenticate_user()
In [ ]:
import argparse
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import LSTM
In [ ]:
def build_model():
inputs = tf.keras.Input(shape=(5, 3))
encoded = tf.keras.layers.LSTM(10)(inputs)
outputs = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(encoded)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
In [ ]:
def train_input_fn():
batch_size = 16
# make some fake data
x = np.random.rand(100, 5, 3)
y = np.random.rand(100, 1)
# TPUs currently do not support float64
x_tensor = tf.constant(x, dtype=tf.float32)
y_tensor = tf.constant(y, dtype=tf.float32)
# create tf.data.Dataset
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))
dataset = dataset.repeat().shuffle(32).batch(batch_size, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, None, None])
labels_shape = labels.get_shape().merge_with([batch_size, None])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
In [ ]:
def main(args):
model = build_model()
if args.use_tpu:
# distribute over TPU cores
# Note: This requires TensorFlow 1.11
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu)
strategy = tf.contrib.tpu.TPUDistributionStrategy(tpu_cluster_resolver)
model = tf.contrib.tpu.keras_to_tpu_model(
model, strategy=strategy)
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
loss_fn = tf.losses.log_loss
model.compile(optimizer, loss_fn)
model.fit(train_input_fn, epochs=3, steps_per_epoch=10)
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
model.save(os.path.join(args.model_dir, 'model.hd5'))
In [ ]:
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--use-tpu',
action='store_true',
help='Whether to use TPU.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on AI Platform.')
args, _ = parser.parse_known_args()
In [ ]:
# colab.research.google.com specific
if 'google.colab' in sys.modules:
import json
import os
# TODO(user): change this
args.model_dir = 'gs://your-gcs-bucket'
# When connected to the TPU runtime
if 'COLAB_TPU_ADDR' in os.environ:
tpu_grpc = 'grpc://{}'.format(os.environ['COLAB_TPU_ADDR'])
args.tpu = tpu_grpc
args.use_tpu = True
# Upload credentials to the TPU
with tf.Session(tpu_grpc) as sess:
data = json.load(open('/content/adc.json'))
tf.contrib.cloud.configure_gcs(sess, credentials=data)
In [ ]:
main(args)