Copyright 2018 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
In [ ]:
# Get the dependency .py files, if any.
! git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git
! cp cloudml-samples/tpu/templates/tpu_lstm_keras/* .
In [ ]:
import argparse
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import LSTM
In [ ]:
def build_model():
inputs = tf.keras.Input(shape=(5, 3))
encoded = tf.keras.layers.LSTM(10)(inputs)
outputs = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(encoded)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
In [ ]:
def train_input_fn():
batch_size = 16
# make some fake data
x = np.random.rand(100, 5, 3)
y = np.random.rand(100, 1)
# TPUs currently do not support float64
x_tensor = tf.constant(x, dtype=tf.float32)
y_tensor = tf.constant(y, dtype=tf.float32)
# create tf.data.Dataset
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))
dataset = dataset.repeat().shuffle(32).batch(batch_size, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, None, None])
labels_shape = labels.get_shape().merge_with([batch_size, None])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
In [ ]:
def main(args):
model = build_model()
if args.use_tpu:
# distribute over TPU cores
# Note: This requires TensorFlow 1.11
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu)
strategy = tf.contrib.tpu.TPUDistributionStrategy(tpu_cluster_resolver)
model = tf.contrib.tpu.keras_to_tpu_model(
model, strategy=strategy)
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
loss_fn = tf.losses.log_loss
model.compile(optimizer, loss_fn)
model.fit(train_input_fn, epochs=3, steps_per_epoch=10)
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
model.save(os.path.join(args.model_dir, 'model.hd5'))
In [ ]:
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--use-tpu',
action='store_true',
help='Whether to use TPU.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on CMLE.')
args, _ = parser.parse_known_args()
In [ ]:
# TODO(user): change this
args.model_dir = 'gs://your-gcs-bucket'
# Get hostname from environment using ipython magic.
# This returns a list.
hostname = !hostname
args.tpu = hostname[0]
args.use_tpu = True
In [ ]:
# Use gcloud command line tool to create a TPU in the same zone as the VM instance.
! gcloud compute tpus create `hostname` \
--zone `gcloud compute instances list --filter="name=$(hostname)" --format 'csv[no-heading](zone)'`\
--network default \
--range 10.101.1.0 \
--version 1.13
In [ ]:
main(args)
In [ ]:
# Use gcloud command line tool to delete the TPU.
! gcloud compute tpus delete `hostname` \
--zone `gcloud compute instances list --filter="name=$(hostname)" --format 'csv[no-heading](zone)'`\
--quiet