Copyright 2018 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
In [ ]:
# Get the dependency .py files, if any.
! git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git
! cp cloudml-samples/tpu/templates/tpu_gan_estimator/* .
In [ ]:
import argparse
import numpy as np
import os
import tensorflow as tf
In [ ]:
INPUT_DIM = 5
OUTPUT_DIM = 3
In [ ]:
def generator_fn(generator_inputs):
outputs = tf.layers.dense(generator_inputs, OUTPUT_DIM)
return outputs
In [ ]:
def discriminator_fn(data, generator_inputs):
outputs = tf.layers.dense(data, 1)
return outputs
In [ ]:
def gen_model_fn(features, labels, mode, params):
# build model
global_step = tf.train.get_global_step()
generator_inputs = features
real_data = labels
with tf.variable_scope('shared', reuse=tf.AUTO_REUSE):
gan_model = tf.contrib.gan.gan_model(generator_fn, discriminator_fn, real_data, generator_inputs)
predictions = gan_model.generated_data
loss = None
train_op = None
if mode == tf.estimator.ModeKeys.TRAIN:
# define loss
gan_loss = tf.contrib.gan.gan_loss(gan_model, add_summaries=False)
loss = gan_loss.generator_loss
# define train_op
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
dummy_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# wrapper to make the optimizer work with TPUs
if params['use_tpu']:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
gan_train_ops = tf.contrib.gan.gan_train_ops(gan_model, gan_loss, optimizer, dummy_optimizer)
# tf.contrib.gan's train op does not manage global steps in it
train_op = tf.group(gan_train_ops.generator_train_op, global_step.assign_add(1))
if params['use_tpu']:
# TPU version of EstimatorSpec
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
else:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
In [ ]:
def dis_model_fn(features, labels, mode, params):
# build model
global_step = tf.train.get_global_step()
generator_inputs = features
real_data = labels
with tf.variable_scope('shared', reuse=tf.AUTO_REUSE):
gan_model = tf.contrib.gan.gan_model(generator_fn, discriminator_fn, real_data, generator_inputs)
predictions = {
'discriminator_gen_outputs': gan_model.discriminator_gen_outputs,
'discriminator_real_outputs': gan_model.discriminator_real_outputs}
loss = None
train_op = None
if mode == tf.estimator.ModeKeys.TRAIN:
# define loss
gan_loss = tf.contrib.gan.gan_loss(gan_model, add_summaries=False)
loss = gan_loss.discriminator_loss
# define train_op
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
dummy_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# wrapper to make the optimizer work with TPUs
if params['use_tpu']:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
gan_train_ops = tf.contrib.gan.gan_train_ops(gan_model, gan_loss, dummy_optimizer, optimizer)
# tf.contrib.gan's train op does not manage global steps in it
train_op = tf.group(gan_train_ops.discriminator_train_op, global_step.assign_add(1))
if params['use_tpu']:
# TPU version of EstimatorSpec
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
else:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
In [ ]:
def train_input_fn(params={}):
# make some fake noise
data_size = 100
noise_tensor = tf.random_normal((data_size, INPUT_DIM))
real_data_tensor = tf.random_uniform((data_size, OUTPUT_DIM))
dataset = tf.data.Dataset.from_tensor_slices((noise_tensor, real_data_tensor))
dataset = dataset.repeat().shuffle(10)
# TPUEstimator passes params when calling input_fn
batch_size = params.get('train_batch_size', 16)
dataset = dataset.batch(batch_size, drop_remainder=True)
# TPUs need to know all dimensions when the graph is built
# Datasets know the batch size only when the graph is run
def set_shapes(features, labels):
features_shape = features.get_shape().merge_with([batch_size, None])
labels_shape = labels.get_shape().merge_with([batch_size, None])
features.set_shape(features_shape)
labels.set_shape(labels_shape)
return features, labels
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE)
return dataset
In [ ]:
def main(args):
# pass the args as params so the model_fn can use
# the TPU specific args
params = vars(args)
if args.use_tpu:
# additional configs required for using TPUs
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(args.tpu)
tpu_config = tf.contrib.tpu.TPUConfig(
num_shards=8, # using Cloud TPU v2-8
iterations_per_loop=args.save_checkpoints_steps)
# use the TPU version of RunConfig
gen_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=os.path.join(args.model_dir, 'generator'),
tpu_config=tpu_config,
save_checkpoints_steps=args.save_checkpoints_steps,
save_summary_steps=100)
dis_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=os.path.join(args.model_dir, 'discriminator'),
tpu_config=tpu_config,
save_checkpoints_steps=args.save_checkpoints_steps,
save_summary_steps=100)
# TPUEstimator
gen_estimator = tf.contrib.tpu.TPUEstimator(
model_fn=gen_model_fn,
config=gen_config,
params=params,
train_batch_size=args.train_batch_size,
eval_batch_size=32,
export_to_tpu=False)
dis_estimator = tf.contrib.tpu.TPUEstimator(
model_fn=dis_model_fn,
config=dis_config,
params=params,
train_batch_size=args.train_batch_size,
eval_batch_size=32,
export_to_tpu=False)
else:
gen_config = tf.estimator.RunConfig(model_dir=os.path.join(args.model_dir, 'generator'))
dis_config = tf.estimator.RunConfig(model_dir=os.path.join(args.model_dir, 'discriminator'))
gen_estimator = tf.estimator.Estimator(
gen_model_fn,
config=gen_config,
params=params)
dis_estimator = tf.estimator.Estimator(
dis_model_fn,
config=dis_config,
params=params)
# manage the training loop
for _ in range(3):
tf.logging.info('Training Discriminator')
dis_estimator.train(train_input_fn, steps=100)
tf.logging.info('Training Generator')
gen_estimator.train(train_input_fn, steps=10)
In [ ]:
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-dir',
type=str,
default='/tmp/tpu-template',
help='Location to write checkpoints and summaries to. Must be a GCS URI when using Cloud TPU.')
parser.add_argument(
'--train-batch-size',
type=int,
default=16,
help='The training batch size. The training batch is divided evenly across the TPU cores.')
parser.add_argument(
'--save-checkpoints-steps',
type=int,
default=100,
help='The number of training steps before saving each checkpoint.')
parser.add_argument(
'--use-tpu',
action='store_true',
help='Whether to use TPU.')
parser.add_argument(
'--tpu',
default=None,
help='The name or GRPC URL of the TPU node. Leave it as `None` when training on CMLE.')
args, _ = parser.parse_known_args()
In [ ]:
# TODO(user): change this
args.model_dir = 'gs://your-gcs-bucket'
# Get hostname from environment using ipython magic.
# This returns a list.
hostname = !hostname
args.tpu = hostname[0]
args.use_tpu = True
In [ ]:
# Use gcloud command line tool to create a TPU in the same zone as the VM instance.
! gcloud compute tpus create `hostname` \
--zone `gcloud compute instances list --filter="name=$(hostname)" --format 'csv[no-heading](zone)'`\
--network default \
--range 10.101.1.0 \
--version 1.13
In [ ]:
main(args)
In [ ]:
# Use gcloud command line tool to delete the TPU.
! gcloud compute tpus delete `hostname` \
--zone `gcloud compute instances list --filter="name=$(hostname)" --format 'csv[no-heading](zone)'`\
--quiet