Copyright (c) 2010-2015, Galois Inc.
www.cryptol.net
You can freely use this source code for educational purposes.
This is a fairly close implementation of the FIPS-197 standard.
In [1]:
type Nk = 4
type AESKeySize = (Nk*32)
Number of blocks and rounds
In [2]:
type Nb = 4
type Nr = 6 + Nk
Helper type definitions
In [3]:
type GF28 = [8]
type State = [4][Nb]GF28
type RoundKey = State
type KeySchedule = (RoundKey, [Nr-1]RoundKey, RoundKey)
$GF(2^8)$ operations
In [4]:
gf28Add : {n} (fin n) => [n]GF28 -> GF28
gf28Add ps = sums ! 0
where sums = [zero] # [ p ^ s | p <- ps | s <- sums ]
irreducible = <| x^^8 + x^^4 + x^^3 + x + 1 |>
gf28Mult : (GF28, GF28) -> GF28
gf28Mult (x, y) = pmod(pmult x y) irreducible
gf28Pow : (GF28, [8]) -> GF28
gf28Pow (n, k) = pow k
where sq x = gf28Mult (x, x)
odd x = x ! 0
pow i = if i == 0 then 1
else if odd i
then gf28Mult(n, sq (pow (i >> 1)))
else sq (pow (i >> 1))
gf28Inverse : GF28 -> GF28
gf28Inverse x = gf28Pow (x, 254)
gf28DotProduct : {n} (fin n) => ([n]GF28, [n]GF28) -> GF28
gf28DotProduct (xs, ys) = gf28Add [ gf28Mult (x, y) | x <- xs
| y <- ys ]
gf28VectorMult : {n, m} (fin n) => ([n]GF28, [m][n]GF28) -> [m]GF28
gf28VectorMult (v, ms) = [ gf28DotProduct(v, m) | m <- ms ]
gf28MatrixMult : {n, m, k} (fin m) => ([n][m]GF28, [m][k]GF28) -> [n][k]GF28
gf28MatrixMult (xss, yss) = [ gf28VectorMult(xs, yss') | xs <- xss ]
where yss' = transpose yss
The affine transform and its inverse
In [5]:
xformByte : GF28 -> GF28
xformByte b = gf28Add [b, (b >>> 4), (b >>> 5), (b >>> 6), (b >>> 7), c]
where c = 0x63
xformByte' : GF28 -> GF28
xformByte' b = gf28Add [(b >>> 2), (b >>> 5), (b >>> 7), d] where d = 0x05
The S-box
In [6]:
sbox : [256]GF28
sbox = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
]
The SubBytes transform and its inverse
In [7]:
SubByte : GF28 -> GF28
SubByte b = xformByte (gf28Inverse b)
SubByte' : GF28 -> GF28
SubByte' b = sbox@b
SubBytes : State -> State
SubBytes state = [ [ SubByte' b | b <- row ] | row <- state ]
InvSubByte : GF28 -> GF28
InvSubByte b = gf28Inverse (xformByte' b)
InvSubBytes : State -> State
InvSubBytes state =[ [ InvSubByte b | b <- row ] | row <- state ]
The ShiftRows transform and its inverse
In [8]:
ShiftRows : State -> State
ShiftRows state = [ row <<< shiftAmount | row <- state
| shiftAmount <- [0 .. 3]
]
InvShiftRows : State -> State
InvShiftRows state = [ row >>> shiftAmount | row <- state
| shiftAmount <- [0 .. 3]
]
The MixColumns transform and its inverse
In [9]:
MixColumns : State -> State
MixColumns state = gf28MatrixMult (m, state)
where m = [[2, 3, 1, 1],
[1, 2, 3, 1],
[1, 1, 2, 3],
[3, 1, 1, 2]]
InvMixColumns : State -> State
InvMixColumns state = gf28MatrixMult (m, state)
where m = [[0x0e, 0x0b, 0x0d, 0x09],
[0x09, 0x0e, 0x0b, 0x0d],
[0x0d, 0x09, 0x0e, 0x0b],
[0x0b, 0x0d, 0x09, 0x0e]]
The AddRoundKey transform
In [10]:
AddRoundKey : (RoundKey, State) -> State
AddRoundKey (rk, s) = rk ^ s
Key expansion
In [11]:
Rcon : [8] -> [4]GF28
Rcon i = [(gf28Pow (<| x |>, i-1)), 0, 0, 0]
SubWord : [4]GF28 -> [4]GF28
SubWord bs = [ SubByte b | b <- bs ]
RotWord : [4]GF28 -> [4]GF28
RotWord [a0, a1, a2, a3] = [a1, a2, a3, a0]
NextWord : ([8],[4][8],[4][8]) -> [4][8]
NextWord(i, prev, old) = old ^ mask
where mask = if i % `Nk == 0
then SubWord(RotWord(prev)) ^ Rcon (i / `Nk)
else if (`Nk > 6) && (i % `Nk == 4)
then SubWord(prev)
else prev
ExpandKeyForever : [Nk][4][8] -> [inf]RoundKey
ExpandKeyForever seed = [ transpose g | g <- groupBy`{4} (keyWS seed) ]
keyWS : [Nk][4][8] -> [inf][4][8]
keyWS seed = ret where
ret = seed # [ NextWord(i, prev, old)
| i <- [ `Nk ... ]
| prev <- drop`{Nk-1} ret
| old <- ret
]
In [12]:
checkKey = take`{16} (drop`{8} (keyWS ["abcd", "defg", "1234", "5678"]))
checkKey2 = [transpose g | g <- groupBy`{4}checkKey]
In [13]:
checkKey
checkKey2
In [14]:
ExpandKey : [AESKeySize] -> KeySchedule
ExpandKey key = (keys @ 0, keys @@ [1 .. (Nr - 1)], keys @ `Nr)
where seed : [Nk][4][8]
seed = split (split key)
keys = ExpandKeyForever seed
fromKS : KeySchedule -> [Nr+1][4][32]
fromKS (f, ms, l) = [ formKeyWords (transpose k) | k <- [f] # ms # [l] ]
where formKeyWords bbs = [ join bs | bs <- bbs ]
AES rounds and inverses
In [15]:
AESRound : (RoundKey, State) -> State
AESRound (rk, s) = AddRoundKey (rk, MixColumns (ShiftRows (SubBytes s)))
AESFinalRound : (RoundKey, State) -> State
AESFinalRound (rk, s) = AddRoundKey (rk, ShiftRows (SubBytes s))
AESInvRound : (RoundKey, State) -> State
AESInvRound (rk, s) =
InvMixColumns (AddRoundKey (rk, InvSubBytes (InvShiftRows s)))
AESFinalInvRound : (RoundKey, State) -> State
AESFinalInvRound (rk, s) = AddRoundKey (rk, InvSubBytes (InvShiftRows s))
Converting a 128 bit message to a State
and then back
In [16]:
msgToState : [128] -> State
msgToState msg = transpose (split (split msg))
stateToMsg : State -> [128]
stateToMsg st = join (join (transpose st))
AES Encryption
In [17]:
aesEncrypt : ([128], [AESKeySize]) -> [128]
aesEncrypt (pt, key) = stateToMsg (AESFinalRound (kFinal, rounds ! 0))
where (kInit, ks, kFinal) = ExpandKey key
state0 = AddRoundKey(kInit, msgToState pt)
rounds = [state0] # [ AESRound (rk, s) | rk <- ks
| s <- rounds
]
AES Decryption
In [18]:
aesDecrypt : ([128], [AESKeySize]) -> [128]
aesDecrypt (ct, key) = stateToMsg (AESFinalInvRound (kFinal, rounds ! 0))
where (kFinal, ks, kInit) = ExpandKey key
state0 = AddRoundKey(kInit, msgToState ct)
rounds = [state0] # [ AESInvRound (rk, s) | rk <- reverse ks
| s <- rounds
]
In [19]:
test1 where (test1,_,_) = ExpandKey 0x3243f6a8885a308d313198a2e0370734
In [20]:
aesEncrypt (0x3243f6a8885a308d313198a2e0370734, 0x2b7e151628aed2a6abf7158809cf4f3c) == 0x3925841d02dc09fbdc118597196a0b32