Cryptol AES Implementation

Copyright (c) 2010-2015, Galois Inc.
www.cryptol.net
You can freely use this source code for educational purposes.

This is a fairly close implementation of the FIPS-197 standard.

Key size

Let Nk be the number of blocks in the key. This must be one of 4 (AES128), 6 (AES192), or 8 (AES256).

Aside from this line, no other code below needs to change for implementing AES128, AES192, or AES256.


In [1]:
type Nk = 4
type AESKeySize  = (Nk*32)


Number of blocks and rounds


In [2]:
type Nb = 4
type Nr = 6 + Nk


Helper type definitions


In [3]:
type GF28        = [8]
type State       = [4][Nb]GF28
type RoundKey    = State
type KeySchedule = (RoundKey, [Nr-1]RoundKey, RoundKey)


$GF(2^8)$ operations


In [4]:
gf28Add : {n} (fin n) => [n]GF28 -> GF28
gf28Add ps = sums ! 0
  where sums = [zero] # [  p ^ s | p <- ps | s <- sums ]

irreducible = <| x^^8 + x^^4 + x^^3 + x + 1 |>

gf28Mult : (GF28, GF28) -> GF28
gf28Mult (x, y) = pmod(pmult x y) irreducible

gf28Pow : (GF28, [8]) -> GF28
gf28Pow (n, k) = pow k
  where   sq x  = gf28Mult (x, x)
          odd x = x ! 0
          pow i = if i == 0 then 1
                  else if odd i
                       then gf28Mult(n, sq (pow (i >> 1)))
                       else sq (pow (i >> 1))

gf28Inverse : GF28 -> GF28
gf28Inverse x = gf28Pow (x, 254)

gf28DotProduct : {n} (fin n) => ([n]GF28, [n]GF28) -> GF28
gf28DotProduct (xs, ys) = gf28Add [ gf28Mult (x, y) | x <- xs
                                                    | y <- ys ]

gf28VectorMult : {n, m} (fin n) => ([n]GF28, [m][n]GF28) -> [m]GF28
gf28VectorMult (v, ms) = [ gf28DotProduct(v, m) | m <- ms ]

gf28MatrixMult : {n, m, k} (fin m) => ([n][m]GF28, [m][k]GF28) -> [n][k]GF28
gf28MatrixMult (xss, yss) = [ gf28VectorMult(xs, yss') | xs <- xss ]
   where yss' = transpose yss


The affine transform and its inverse


In [5]:
xformByte : GF28 -> GF28
xformByte b = gf28Add [b, (b >>> 4), (b >>> 5), (b >>> 6), (b >>> 7), c]
   where c = 0x63

xformByte' : GF28 -> GF28
xformByte' b = gf28Add [(b >>> 2), (b >>> 5), (b >>> 7), d] where d = 0x05


The S-box


In [6]:
sbox : [256]GF28
sbox = [
   0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
   0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
   0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
   0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
   0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
   0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
   0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
   0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
   0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
   0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
   0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
   0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
   0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
   0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
   0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
   0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
   ]


The SubBytes transform and its inverse


In [7]:
SubByte : GF28 -> GF28
SubByte b = xformByte (gf28Inverse b)

SubByte' : GF28 -> GF28
SubByte' b = sbox@b

SubBytes : State -> State
SubBytes state = [ [ SubByte' b | b <- row ] | row <- state ]


InvSubByte : GF28 -> GF28
InvSubByte b = gf28Inverse (xformByte' b)

InvSubBytes : State -> State
InvSubBytes state =[ [ InvSubByte b | b <- row ] | row <- state ]


The ShiftRows transform and its inverse


In [8]:
ShiftRows : State -> State
ShiftRows state = [ row <<< shiftAmount | row <- state
                                        | shiftAmount <- [0 .. 3]
                  ]

InvShiftRows : State -> State
InvShiftRows state = [ row >>> shiftAmount | row <- state
                                           | shiftAmount <- [0 .. 3]
                     ]


The MixColumns transform and its inverse


In [9]:
MixColumns : State -> State
MixColumns state = gf28MatrixMult (m, state)
    where m = [[2, 3, 1, 1],
               [1, 2, 3, 1],
               [1, 1, 2, 3],
               [3, 1, 1, 2]]

InvMixColumns : State -> State
InvMixColumns state = gf28MatrixMult (m, state)
    where m = [[0x0e, 0x0b, 0x0d, 0x09],
               [0x09, 0x0e, 0x0b, 0x0d],
               [0x0d, 0x09, 0x0e, 0x0b],
               [0x0b, 0x0d, 0x09, 0x0e]]


The AddRoundKey transform


In [10]:
AddRoundKey : (RoundKey, State) -> State
AddRoundKey (rk, s) = rk ^ s


Key expansion


In [11]:
Rcon : [8] -> [4]GF28
Rcon i = [(gf28Pow (<| x |>, i-1)), 0, 0, 0]

SubWord : [4]GF28 -> [4]GF28
SubWord bs = [ SubByte b | b <- bs ]

RotWord : [4]GF28 -> [4]GF28
RotWord [a0, a1, a2, a3] = [a1, a2, a3, a0]

NextWord : ([8],[4][8],[4][8]) -> [4][8]
NextWord(i, prev, old) = old ^ mask
   where mask = if i % `Nk == 0
                then SubWord(RotWord(prev)) ^ Rcon (i / `Nk)
                else if (`Nk > 6) && (i % `Nk == 4)
                     then SubWord(prev)
                     else prev


ExpandKeyForever : [Nk][4][8] -> [inf]RoundKey
ExpandKeyForever seed = [ transpose g | g <- groupBy`{4} (keyWS seed) ]

keyWS : [Nk][4][8] -> [inf][4][8]
keyWS seed    = ret where 
          ret = seed # [ NextWord(i, prev, old)
                       | i    <- [ `Nk ... ]
                       | prev <- drop`{Nk-1} ret
                       | old  <- ret
                       ]



In [12]:
checkKey = take`{16} (drop`{8} (keyWS ["abcd", "defg", "1234", "5678"]))
checkKey2 = [transpose g | g <- groupBy`{4}checkKey]



In [13]:
checkKey
checkKey2


[[0x89, 0x97, 0x8a, 0x99], [0x88, 0x0a, 0x88, 0x0c],
 [0xb8, 0xa5, 0xb9, 0xad], [0xbd, 0x3c, 0xbf, 0x34],
 [0x66, 0x9f, 0x92, 0xe3], [0xee, 0x95, 0x1a, 0xef],
 [0x56, 0x30, 0xa3, 0x42], [0xeb, 0x0c, 0x1c, 0x76],
 [0x90, 0x03, 0xaa, 0x0a], [0x7e, 0x96, 0xb0, 0xe5],
 [0x28, 0xa6, 0x13, 0xa7], [0xc3, 0xaa, 0x0f, 0xd1],
 [0x2c, 0x75, 0x94, 0x24], [0x52, 0xe3, 0x24, 0xc1],
 [0x7a, 0x45, 0x37, 0x66], [0xb9, 0xef, 0x38, 0xb7]]
[[[0x89, 0x88, 0xb8, 0xbd], [0x97, 0x0a, 0xa5, 0x3c],
  [0x8a, 0x88, 0xb9, 0xbf], [0x99, 0x0c, 0xad, 0x34]],
 [[0x66, 0xee, 0x56, 0xeb], [0x9f, 0x95, 0x30, 0x0c],
  [0x92, 0x1a, 0xa3, 0x1c], [0xe3, 0xef, 0x42, 0x76]],
 [[0x90, 0x7e, 0x28, 0xc3], [0x03, 0x96, 0xa6, 0xaa],
  [0xaa, 0xb0, 0x13, 0x0f], [0x0a, 0xe5, 0xa7, 0xd1]],
 [[0x2c, 0x52, 0x7a, 0xb9], [0x75, 0xe3, 0x45, 0xef],
  [0x94, 0x24, 0x37, 0x38], [0x24, 0xc1, 0x66, 0xb7]]]

In [14]:
ExpandKey : [AESKeySize] -> KeySchedule
ExpandKey key = (keys @ 0, keys @@ [1 .. (Nr - 1)], keys @ `Nr)
  where   seed : [Nk][4][8]
          seed = split (split key)
          keys = ExpandKeyForever seed

fromKS : KeySchedule -> [Nr+1][4][32]
fromKS (f, ms, l) = [ formKeyWords (transpose k) | k <- [f] # ms # [l] ]
    where formKeyWords bbs = [ join bs | bs <- bbs ]


AES rounds and inverses


In [15]:
AESRound : (RoundKey, State) -> State
AESRound (rk, s) = AddRoundKey (rk, MixColumns (ShiftRows (SubBytes s)))

AESFinalRound : (RoundKey, State) -> State
AESFinalRound (rk, s) = AddRoundKey (rk, ShiftRows (SubBytes s))

AESInvRound : (RoundKey, State) -> State
AESInvRound (rk, s) =
      InvMixColumns (AddRoundKey (rk, InvSubBytes (InvShiftRows s)))
AESFinalInvRound : (RoundKey, State) -> State
AESFinalInvRound (rk, s) = AddRoundKey (rk, InvSubBytes (InvShiftRows s))


Converting a 128 bit message to a State and then back


In [16]:
msgToState : [128] -> State
msgToState msg = transpose (split (split msg))

stateToMsg : State -> [128]
stateToMsg st = join (join (transpose st))


AES Encryption


In [17]:
aesEncrypt : ([128], [AESKeySize]) -> [128]
aesEncrypt (pt, key) = stateToMsg (AESFinalRound (kFinal, rounds ! 0))
  where   (kInit, ks, kFinal) = ExpandKey key
          state0 = AddRoundKey(kInit, msgToState pt)
          rounds = [state0] # [ AESRound (rk, s) | rk <- ks
                                                 | s <- rounds
                              ]


AES Decryption


In [18]:
aesDecrypt : ([128], [AESKeySize]) -> [128]
aesDecrypt (ct, key) = stateToMsg (AESFinalInvRound (kFinal, rounds ! 0))
  where   (kFinal, ks, kInit) = ExpandKey key
          state0 = AddRoundKey(kInit, msgToState ct)
          rounds = [state0] # [ AESInvRound (rk, s) | rk <- reverse ks
                                                    | s  <- rounds
                              ]



In [19]:
test1 where (test1,_,_) = ExpandKey 0x3243f6a8885a308d313198a2e0370734


[[0x32, 0x88, 0x31, 0xe0], [0x43, 0x5a, 0x31, 0x37],
 [0xf6, 0x30, 0x98, 0x07], [0xa8, 0x8d, 0xa2, 0x34]]

In [20]:
aesEncrypt (0x3243f6a8885a308d313198a2e0370734, 0x2b7e151628aed2a6abf7158809cf4f3c) == 0x3925841d02dc09fbdc118597196a0b32


True