In [1]:
    
from scipy.optimize import linprog
import numpy as np
    
In [2]:
    
z = np.array([ 7, 6])
    
In [3]:
    
C = np.array([
    [ 2, 3],          #C1
    [ 6, 5]           #C2
])
    
In [4]:
    
b = np.array([12, 30])
    
In [5]:
    
x1 = (0, None)
x2 = (0, None)
    
In [6]:
    
sol = linprog(-z, A_ub = C, b_ub = b, bounds = (x1, x2), method='simplex')
    
In [7]:
    
sol
    
    Out[7]:
In this case this problem is not giving Integer Variables.
Getting integer variables, add options={'maxiter':True} in the parameters of linprog.
In [8]:
    
sol = linprog(-z, A_ub = C, b_ub = b, bounds = (x1, x2), method='simplex', options={'maxiter':True})
    
In [9]:
    
sol
    
    Out[9]:
To print the values that we need:
In [10]:
    
print(f"x1 = {sol.x[0]}, x2 = {sol.x[1]}, z = {sol.fun*-1}")
    
    
LP problem is solved, to check the result just replace the values $x_1$ and $x_2$ into the objective function.
$z(max) = 7x_1 + 6x_2$
$z(max) = 7*5 + 6*0$
$z(max) = 35$