Mean-Variance Portfolio Class

Without doubt, the Markowitz (1952) mean-variance portfolio theory is a cornerstone of modern financial theory. This section illustrates the use of the mean_variance_portfolio class to implement this approach.


In [1]:
from dx import *
import seaborn as sns; sns.set()

Market Environment and Portfolio Object

We start by instantiating a market environment object which in particular contains a list of ticker symbols in which we are interested in.


In [2]:
ma = market_environment('ma', dt.date(2010, 1, 1))
ma.add_list('symbols', ['AAPL', 'GOOG', 'MSFT', 'FB'])
ma.add_constant('source', 'google')
ma.add_constant('final date', dt.date(2014, 3, 1))

Using pandas under the hood, the class retrieves historial stock price data from either Yahoo! Finance of Google.


In [3]:
%%time
port = mean_variance_portfolio('am_tech_stocks', ma)
  # instantiates the portfolio class
  # and retrieves all the time series data needed


CPU times: user 236 ms, sys: 3 ms, total: 239 ms
Wall time: 1.2 s

Basic Statistics

Since no portfolio weights have been provided, the class defaults to equal weights.


In [4]:
port.get_weights()
  # defaults to equal weights


Out[4]:
{'AAPL': 0.25, 'FB': 0.25, 'GOOG': 0.25, 'MSFT': 0.25}

Given these weights you can calculate the portfolio return via the method get_portfolio_return.


In [5]:
port.get_portfolio_return()
  # expected (= historical mean) return


Out[5]:
0.19012032495905895

Analogously, you can call get_portfolio_variance to get the historical portfolio variance.


In [6]:
port.get_portfolio_variance()
  # expected (= historical) variance


Out[6]:
0.043145879775030503

The class also has a neatly printable string representation.


In [7]:
print port
  # ret. con. is "return contribution"
  # given the mean return and the weight
  # of the security


Portfolio am_tech_stocks 
--------------------------
return            0.190
volatility        0.208
Sharpe ratio      0.915

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.250 |     0.054 
GOOG   |  0.250 |     0.040 
MSFT   |  0.250 |     0.013 
FB     |  0.250 |     0.083 

Setting Weights

Via the method set_weights the weights of the single portfolio components can be adjusted.


In [8]:
port.set_weights([0.6, 0.2, 0.1, 0.1])

In [9]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.201
volatility        0.216
Sharpe ratio      0.927

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.600 |     0.130 
GOOG   |  0.200 |     0.032 
MSFT   |  0.100 |     0.005 
FB     |  0.100 |     0.033 

You cal also easily check results for different weights with changing the attribute values of an object.


In [10]:
port.test_weights([0.6, 0.2, 0.1, 0.1])
    # returns av. return + vol + Sharp ratio
    # without setting new weights


Out[10]:
array([ 0.20064395,  0.21644491,  0.92699775])

Let us implement a Monte Carlo simulation over potential portfolio weights.


In [11]:
# Monte Carlo simulation of portfolio compositions
rets = []
vols = []

for w in range(500):
    weights = np.random.random(4)
    weights /= sum(weights)
    r, v, sr = port.test_weights(weights)
    rets.append(r)
    vols.append(v)

rets = np.array(rets)
vols = np.array(vols)

And the simulation results visualized.


In [12]:
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(10, 6))
plt.scatter(vols, rets, c=rets / vols, marker='o')
plt.xlabel('expected volatility')
plt.ylabel('expected return')
plt.colorbar(label='Sharpe ratio')


Out[12]:
<matplotlib.colorbar.Colorbar instance at 0x7f0a033748c0>

Optimizing Portfolio Composition

One of the major application areas of the mean-variance portfolio theory and therewith of this DX Analytics class it the optimization of the portfolio composition. Different target functions can be used to this end.

Return

The first target function might be the portfolio return.


In [13]:
port.optimize('Return')
  # maximizes expected return of portfolio
  # no volatility constraint

In [14]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.332
volatility        0.523
Sharpe ratio      0.635

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.000 |     0.000 
GOOG   | -0.000 |     0.000 
MSFT   |  0.000 |     0.000 
FB     |  1.000 |     0.332 

Instead of maximizing the portfolio return without any constraints, you can also set a (sensible/possible) maximum target volatility level as a constraint. Both, in an exact sense ("equality constraint") ...


In [15]:
port.optimize('Return', constraint=0.225, constraint_type='Exact')
  # interpretes volatility constraint as equality

In [16]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.226
volatility        0.225
Sharpe ratio      1.005

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.481 |     0.104 
GOOG   |  0.294 |     0.047 
MSFT   |  0.000 |     0.000 
FB     |  0.225 |     0.075 

... or just a an upper bound ("inequality constraint").


In [17]:
port.optimize('Return', constraint=0.4, constraint_type='Bound')
  # interpretes volatility constraint as inequality (upper bound)

In [18]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.302
volatility        0.400
Sharpe ratio      0.756

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.258 |     0.056 
GOOG   |  0.000 |     0.000 
MSFT   | -0.000 |     0.000 
FB     |  0.742 |     0.246 

Risk

The class also allows you to minimize portfolio risk.


In [19]:
port.optimize('Vol')
  # minimizes expected volatility of portfolio
  # no return constraint

In [20]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.140
volatility        0.187
Sharpe ratio      0.747

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.211 |     0.046 
GOOG   |  0.248 |     0.040 
MSFT   |  0.448 |     0.023 
FB     |  0.093 |     0.031 

And, as before, to set constraints (in this case) for the target return level.


In [21]:
port.optimize('Vol', constraint=0.175, constraint_type='Exact')
  # interpretes return constraint as equality

In [22]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.175
volatility        0.194
Sharpe ratio      0.904

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.318 |     0.069 
GOOG   |  0.282 |     0.045 
MSFT   |  0.256 |     0.013 
FB     |  0.143 |     0.048 


In [23]:
port.optimize('Vol', constraint=0.20, constraint_type='Bound')
  # interpretes return constraint as inequality (upper bound)

In [24]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.200
volatility        0.206
Sharpe ratio      0.970

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.397 |     0.086 
GOOG   |  0.301 |     0.048 
MSFT   |  0.123 |     0.006 
FB     |  0.179 |     0.059 

Sharpe Ratio

Often, the target of the portfolio optimization efforts is the so called Sharpe ratio. The mean_variance_portfolio class of DX Analytics assumes a risk-free rate of zero in this context.


In [25]:
port.optimize('Sharpe')
  # maximize Sharpe ratio

In [26]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.229
volatility        0.228
Sharpe ratio      1.006

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.493 |     0.107 
GOOG   |  0.268 |     0.043 
MSFT   |  0.000 |     0.000 
FB     |  0.238 |     0.079 

Efficient Frontier

Another application area is to derive the efficient frontier in the mean-variance space. These are all these portfolios for which there is no portfolio with both lower risk and higher return. The method get_efficient_frontier yields the desired results.


In [27]:
%%time
evols, erets = port.get_efficient_frontier(100)
  # 100 points of the effient frontier


CPU times: user 2.12 s, sys: 1 ms, total: 2.12 s
Wall time: 2.12 s

The plot with the random and efficient portfolios.


In [28]:
plt.figure(figsize=(10, 6))
plt.scatter(vols, rets, c=rets / vols, marker='o')
plt.scatter(evols, erets, c=erets / evols, marker='x')
plt.xlabel('expected volatility')
plt.ylabel('expected return')
plt.colorbar(label='Sharpe ratio')


Out[28]:
<matplotlib.colorbar.Colorbar instance at 0x7f0a031f1f38>

Capital Market Line

The capital market line is another key element of the mean-variance portfolio approach representing all those risk-return combinations (in mean-variance space) that are possible to form from a risk-less money market account and the market portfolio (or another appropriate substitute efficient portfolio).


In [29]:
%%time
cml, optv, optr = port.get_capital_market_line(riskless_asset=0.05)
  # capital market line for effiecient frontier and risk-less short rate


CPU times: user 2.15 s, sys: 1 ms, total: 2.15 s
Wall time: 2.15 s

In [30]:
cml  # lambda function for capital market line


Out[30]:
<function dx.dx_portfolio.<lambda>>

The following plot illustrates that the capital market line has an ordinate value equal to the risk-free rate (the safe return of the money market account) and is tangent to the efficient frontier.


In [31]:
plt.figure(figsize=(10, 6))
plt.plot(evols, erets, lw=2.0, label='efficient frontier')
plt.plot((0, 0.4), (cml(0), cml(0.4)), lw=2.0, label='capital market line')
plt.plot(optv, optr, 'r*', markersize=10, label='optimal portfolio')
plt.legend(loc=0)
plt.ylim(0)
plt.xlabel('expected volatility')
plt.ylabel('expected return')


Out[31]:
<matplotlib.text.Text at 0x7f0a03019890>

Portfolio return and risk of the efficient portfolio used are:


In [32]:
optr


Out[32]:
0.23779804830709764

In [33]:
optv


Out[33]:
0.23758786292012518

The portfolio composition can be derived as follows.


In [34]:
port.optimize('Vol', constraint=optr, constraint_type='Exact')

In [35]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.238
volatility        0.238
Sharpe ratio      1.001

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.532 |     0.116 
GOOG   |  0.192 |     0.031 
MSFT   |  0.000 |     0.000 
FB     |  0.276 |     0.091 

Or also in this way.


In [36]:
port.optimize('Return', constraint=optv, constraint_type='Exact')

In [37]:
print port


Portfolio am_tech_stocks 
--------------------------
return            0.238
volatility        0.238
Sharpe ratio      1.001

Positions
symbol | weight | ret. con. 
--------------------------- 
AAPL   |  0.531 |     0.115 
GOOG   |  0.193 |     0.031 
MSFT   |  0.000 |     0.000 
FB     |  0.276 |     0.092 

Dow Jones Industrial Average

As a larger, more realistic example, consider all symbols of the Dow Jones Industrial Average 30 index.


In [38]:
symbols = ['AXP', 'BA', 'CAT', 'CSCO', 'CVX', 'DD', 'DIS', 'GE',
    'GS', 'HD', 'IBM', 'INTC', 'JNJ', 'JPM', 'KO', 'MCD', 'MMM',
    'MRK', 'MSFT', 'NKE', 'PFE', 'PG', 'T', 'TRV', 'UNH', 'UTX',
    'V', 'VZ','WMT', 'XOM']
  # all DJIA 30 symbols

In [39]:
ma = market_environment('ma', dt.date(2010, 1, 1))
ma.add_list('symbols', symbols)
ma.add_constant('source', 'google')
ma.add_constant('final date', dt.date(2014, 3, 1))

Data retrieval in this case takes a bit.


In [40]:
%%time
djia = mean_variance_portfolio('djia', ma)
  # defining the portfolio and retrieving the data


Can not find data for source google and symbol DIS.
Will try other source.
Can not find data for source google and symbol MMM.
Will try other source.
CPU times: user 1.48 s, sys: 36 ms, total: 1.51 s
Wall time: 8.21 s

In [41]:
%%time
djia.optimize('Vol')
print djia.variance, djia.variance ** 0.5
  # minimium variance & volatility in decimals


0.00868910595895 0.0932153740482
CPU times: user 192 ms, sys: 1 ms, total: 193 ms
Wall time: 192 ms

Given the larger data set now used, efficient frontier ...


In [42]:
%%time
evols, erets = djia.get_efficient_frontier(25)
  # efficient frontier of DJIA


CPU times: user 8.8 s, sys: 1 ms, total: 8.8 s
Wall time: 8.8 s

... and capital market line derivations take also longer.


In [43]:
%%time
cml, optv, optr = djia.get_capital_market_line(riskless_asset=0.01)
  # capital market line and optimal (tangent) portfolio


CPU times: user 31.6 s, sys: 1 ms, total: 31.6 s
Wall time: 31.6 s

In [44]:
plt.figure(figsize=(10, 6))
plt.plot(evols, erets, lw=2.0, label='efficient frontier')
plt.plot((0, 0.4), (cml(0), cml(0.4)), lw=2.0, label='capital market line')
plt.plot(optv, optr, 'r*', markersize=10, label='optimal portfolio')
plt.legend(loc=0)
plt.ylim(0)
plt.xlabel('expected volatility')
plt.ylabel('expected return')


Out[44]:
<matplotlib.text.Text at 0x7f0a030c6790>

Copyright, License & Disclaimer

© Dr. Yves J. Hilpisch | The Python Quants GmbH

DX Analytics (the "dx library") is licensed under the GNU Affero General Public License version 3 or later (see http://www.gnu.org/licenses/).

DX Analytics comes with no representations or warranties, to the extent permitted by applicable law.


http://tpq.io | team@tpq.io | http://twitter.com/dyjh

Quant Platform | http://quant-platform.com

Derivatives Analytics with Python (Wiley Finance) | http://derivatives-analytics-with-python.com

Python for Finance (O'Reilly) | http://python-for-finance.com