In [ ]:
from textblob.classifiers import NaiveBayesClassifier
def model_training():
def model_evaluate():
In [ ]:
In [ ]:
from github import Github
from random import randint
g = Github("chunkzer", "fhd4password")
input_string = "facebook/react" #Replaced with user given string
repo = g.get_repo(input_string, False)
root_dir = repo.get_git_tree(sha="master", recursive=True)
fileHash = {}
for file in root_dir.tree:
fileHash[file.path] = [0,0,0,0]
for key in magicHash:
commits = repo.get_commits(path=key)
for commit in commits:
fileHash[key][randint(0,3)]+= 1 #Replace with model results.
print g.rate_limiting