OLS Regression Results
==============================================================================
Dep. Variable: y_basic R-squared: 0.993
Model: OLS Adj. R-squared: 0.992
Method: Least Squares F-statistic: 2628.
Date: Mon, 27 Feb 2017 Prob (F-statistic): 7.75e-22
Time: 19:57:29 Log-Likelihood: -48.575
No. Observations: 20 AIC: 99.15
Df Residuals: 19 BIC: 100.1
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x 0.0001 2.37e-06 51.269 0.000 0.000 0.000
==============================================================================
Omnibus: 3.436 Durbin-Watson: 1.028
Prob(Omnibus): 0.179 Jarque-Bera (JB): 2.013
Skew: 0.542 Prob(JB): 0.366
Kurtosis: 1.887 Cond. No. 1.00
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.