Train a convnet classifier on the MNIST dataset and visualize cost function and first layer filters using Agnez app.
Agnez app:
node.js, coffeescript
Deep learning:
Keras
git clone --recursive https://github.com/AgnezIO/agnez_app.gitcd agnez_appmake make run
In [2]:
%matplotlib inline
'''
This code was modified from: https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
Train a simple convnet on the MNIST dataset.
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python mnist_cnn.py
Get to 99.25% test accuracy after 12 epochs (there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
import os
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras.regularizers import l2
from agnez.app_callbacks import LossPlot, VisualizeConvWeights
In [3]:
batch_size = 128
nb_classes = 10
nb_epoch = 12
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 7
# the data, shuffled and split between tran and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid', W_regularizer=l2(.01),
input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
#model.add(Dropout(0.25))
model.add(Flatten())
#model.add(Dense(128))
#model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
In [4]:
model.compile(loss='categorical_crossentropy', optimizer='adadelta')
In [5]:
# here we are using the default values for `name`, `description` and `app_url`
loss_plot = LossPlot(name='Loss plot',
description='train (blue) and validation (green) learning curves',
position=0, app_url='http://localhost:3000/api/v1/values')
In [6]:
# static_path = '/Full/path/to/agnez_app
static_path = '/Users/eder/js/agnez_dash'
conv_weights = VisualizeConvWeights(weights=model.layers[0].W, static_path=static_path, name='Conv weights',
description='weights of convolutional layer', position=1,
app_url='http://localhost:3000/api/v1/values')
In [ ]:
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
show_accuracy=True, verbose=1, validation_data=(X_test, Y_test),
callbacks=[loss_plot, conv_weights])
You should get something like this on http://localhost:3000