In [ ]:
from __future__ import print_function
import numpy as np
from bqplot import *
In [ ]:
np.random.seed(0)
data = np.random.randn(10, 10)
In [ ]:
col_sc = ColorScale()
grid_map = GridHeatMap(color=data, scales={'color': col_sc})
Figure(marks=[grid_map], padding_y=0.0)
In [ ]:
x_sc, y_sc, col_sc = OrdinalScale(), OrdinalScale(reverse=True), ColorScale()
grid_map = GridHeatMap(color=data, scales={'column': x_sc, 'row': y_sc, 'color': col_sc})
ax_x, ax_y = Axis(scale=x_sc), Axis(scale=y_sc, orientation='vertical')
Figure(marks=[grid_map], axes=[ax_x, ax_y], padding_y=0.0)
In [ ]:
x_sc, y_sc, col_sc = LinearScale(), LinearScale(reverse=True), ColorScale()
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation='vertical')
## The data along the rows is not uniform. Hence the 5th row(from top) of the map
## is twice the height of the remaining rows.
row_data = np.arange(10)
row_data[5:] = np.arange(6, 11)
column_data = np.arange(10, 20)
grid_map = GridHeatMap(row=row_data, column=column_data, color=data,
scales={'row': y_sc, 'column': x_sc, 'color': col_sc})
Figure(marks=[grid_map], padding_y=0.0, axes=[ax_x, ax_y])
In [ ]:
print(row_data.shape)
print(column_data.shape)
print(data.shape)
For a N-by-N
matrix, N+1
points along the row or the column are assumed to be end points.
In [ ]:
x_sc, y_sc, col_sc = LinearScale(), LinearScale(reverse=True), ColorScale()
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation='vertical')
row_data = np.arange(11)
column_data = np.arange(10, 21)
grid_map = GridHeatMap(row=row_data, column=column_data, color=data,
scales={'row': y_sc, 'column': x_sc, 'color': col_sc})
Figure(marks=[grid_map], padding_y=0.0, axes=[ax_x, ax_y])
By default, for N
points along any dimension, data aligns to the start
of the rectangles in the grid.
The grid extends infinitely in the other direction. By default, the grid extends infintely
towards the bottom and the right.
In [ ]:
x_sc, y_sc, col_sc = LinearScale(), LinearScale(reverse=True, max=15), ColorScale()
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation='vertical')
row_data = np.arange(10)
column_data = np.arange(10, 20)
grid_map = GridHeatMap(row=row_data, column=column_data, color=data,
scales={'row': y_sc, 'column': x_sc, 'color': col_sc})
Figure(marks=[grid_map], padding_y=0.0, axes=[ax_x, ax_y])
By changing the row_align
and column_align
properties, the grid can extend in the opposite direction
In [ ]:
x_sc, y_sc, col_sc = LinearScale(), LinearScale(reverse=True, min=-5, max=15), ColorScale()
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation='vertical')
row_data = np.arange(10)
column_data = np.arange(10, 20)
grid_map = GridHeatMap(row=row_data, column=column_data, color=data,
scales={'row': y_sc, 'column': x_sc, 'color': col_sc},
row_align='end')
Figure(marks=[grid_map], padding_y=0.0, axes=[ax_x, ax_y])
For N+1
points on any direction, the grid extends infintely in both directions
In [ ]:
x_sc, y_sc, col_sc = LinearScale(), LinearScale(reverse=True, min=-5, max=15), ColorScale()
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation='vertical')
row_data = np.arange(9)
column_data = np.arange(10, 20)
grid_map = GridHeatMap(row=row_data, column=column_data, color=data,
scales={'row': y_sc, 'column': x_sc, 'color': col_sc}, row_align='end')
Figure(marks=[grid_map], padding_y=0.0, axes=[ax_x, ax_y])
In [ ]:
col_sc = ColorScale()
grid_map = GridHeatMap(color=data, scales={'color': col_sc}, opacity=0.3, stroke='white')
Figure(marks=[grid_map], padding_y=0.0)
Selection on the GridHeatMap
works similar to excel. Clicking on a cell selects the cell, and deselects the previous selection. Using the Ctrl
key allows multiple cells to be selected, while the Shift
key selects the range from the last cell in the selection to the current cell.
In [ ]:
data = np.random.randn(10, 10)
col_sc = ColorScale()
grid_map = GridHeatMap(color=data, scales={'color': col_sc}, interactions={'click':'select'},
selected_style={'opacity': '1.0'}, unselected_style={'opacity': 0.4})
Figure(marks=[grid_map], padding_y=0.0)
The selected
trait of a GridHeatMap
contains a list of lists, with each sub-list containing the row and column index of a selected cell.
In [ ]:
grid_map.selected
In [ ]: