In [1]:
import smv
from pandas import *
pandas.set_option('display.max_columns', None)
pandas.set_option('display.max_rows', 20)

import numpy as np
src_path = "/Users/xingyuwu/Documents/Datasense/Product/Demo_Output/"
proj_nm = "com.datasenseanalytics.pluto.airlinedemo."

DM Scenario 1


In [3]:
corp_raw = ddf(proj_nm+"feature.CorpQuarterFeature")
corp_df = corp_raw.toPandas()
corp_df.head(10)


Out[3]:
CORP_ACC_NO smvTime corpcnt_tvl_seg_per_qt corpcnt_cm_tvl_per_qt corpcnt_cm_dly2hr_per_qt corpcnt_cm_dly2hr_p1q corpcnt_cm_total
0 5540324 Q201104 0 0 0 NaN 14
1 5540324 Q201201 155 2 1 0.0 14
2 5540324 Q201202 404 4 1 1.0 14
3 5540324 Q201203 364 3 1 1.0 14
4 5540324 Q201204 631 7 1 1.0 14
5 5540324 Q201301 444 6 1 1.0 14
6 5540324 Q201302 632 3 1 1.0 14
7 5540324 Q201303 323 5 1 1.0 14
8 5540324 Q201304 484 9 1 1.0 14
9 5540324 Q201401 415 5 1 1.0 14
Feature Descriptipn
corpcnt_tvl_seg_per_qt count travelled segments of a corporate account per quarter
corpcnt_cm_tvl_per_qt count distinct # of travelled customers of a corporate account per quarter
corpcnt_cm_dly2hr_per_qt count distinct # of customers with >2hr delay of a corporate account per quarter
corpcnt_seg_dly2hr_per_qt count segments with >2hr delay of a corporate account per quarter

DM Scenario 3


In [7]:
leg_df = pd.read_csv(src_path+"LegOrgStnFeature.csv")
leg_df[leg_df.SCH_LEG_ORIG_CD == """JFK"""]


Out[7]:
SCH_LEG_ORIG_CD flt_leg_dprt_hr orgavg_0_web_upd_rate_per_hr orgavg_1_web_upd_rate_per_hr orgavg_2_web_upd_rate_per_hr orgavg_3_web_upd_rate_per_hr orgavg_4_web_upd_rate_per_hr orgavg_5_web_upd_rate_per_hr orgavg_0_CC_upd_rate_per_hr orgavg_1_CC_upd_rate_per_hr orgavg_2_CC_upd_rate_per_hr orgavg_3_CC_upd_rate_per_hr orgavg_4_CC_upd_rate_per_hr orgavg_5_CC_upd_rate_per_hr orgavg_0_Airport_upd_rate_per_hr orgavg_1_Airport_upd_rate_per_hr orgavg_2_Airport_upd_rate_per_hr orgavg_3_Airport_upd_rate_per_hr orgavg_4_Airport_upd_rate_per_hr orgavg_5_Airport_upd_rate_per_hr orgavg_0_upd_rate_per_hr orgavg_1_upd_rate_per_hr orgavg_2_upd_rate_per_hr orgavg_3_upd_rate_per_hr orgavg_4_upd_rate_per_hr orgavg_5_upd_rate_per_hr orgavg_upd_rate_per_hr orgavg_grd_stf_per_hr org_rto_pax_grd_stf_per_hr
258 JFK 0 0.056180 0.037383 0.098765 0.081633 0.0 0.0 0.033708 0.037383 0.049383 0.081633 0.0 0.0 0.044944 0.046729 0.037037 0.040816 0.0 0.0 0.134831 0.121495 0.185185 0.204082 0.0 0.0 0.109630 5.000000 45.000000
262 JFK 1 0.031496 0.173913 0.027778 0.045455 0.0 0.0 0.023622 0.086957 0.055556 0.000000 0.0 0.0 0.023622 0.021739 0.055556 0.045455 0.0 0.0 0.078740 0.282609 0.138889 0.090909 0.0 0.0 0.100671 4.000000 37.250000
332 JFK 10 0.085859 0.196970 0.029412 0.055556 0.0 0.0 0.015152 0.090909 0.058824 0.055556 0.0 0.0 0.010101 0.075758 0.029412 0.083333 0.0 0.0 0.111111 0.363636 0.117647 0.194444 0.0 0.0 0.129787 11.500000 20.434783
335 JFK 11 0.057692 0.175000 0.085714 0.045455 0.0 0.0 0.057692 0.000000 0.028571 0.000000 0.0 0.0 0.000000 0.025000 0.057143 0.000000 0.0 0.0 0.115385 0.200000 0.171429 0.045455 0.0 0.0 0.112500 12.000000 20.000000
338 JFK 12 0.078603 0.151163 0.073529 0.022727 0.0 0.0 0.048035 0.034884 0.044118 0.068182 0.0 0.0 0.026201 0.034884 0.044118 0.022727 0.0 0.0 0.152838 0.220930 0.161765 0.113636 0.0 0.0 0.122592 11.000000 12.977273
342 JFK 13 0.061224 0.058824 0.066667 0.000000 0.0 0.0 0.020408 0.117647 0.066667 0.000000 0.0 0.0 0.020408 0.058824 0.066667 0.000000 0.0 0.0 0.102041 0.235294 0.200000 0.000000 0.0 0.0 0.113208 9.000000 11.777778
348 JFK 15 0.072254 0.142857 0.074766 0.015625 0.0 0.0 0.020231 0.042017 0.037383 0.031250 0.0 0.0 0.011561 0.042017 0.046729 0.046875 0.0 0.0 0.104046 0.226891 0.158879 0.093750 0.0 0.0 0.105006 12.000000 17.062500
350 JFK 16 0.034091 0.085714 0.068966 0.052632 0.0 0.0 0.034091 0.057143 0.068966 0.052632 0.0 0.0 0.011364 0.028571 0.000000 0.052632 0.0 0.0 0.079545 0.171429 0.137931 0.157895 0.0 0.0 0.091324 10.500000 10.428571
354 JFK 17 0.055046 0.097561 0.028571 0.000000 0.0 0.0 0.036697 0.048780 0.057143 0.050000 0.0 0.0 0.027523 0.024390 0.028571 0.000000 0.0 0.0 0.119266 0.170732 0.114286 0.050000 0.0 0.0 0.092593 9.500000 14.210526
356 JFK 18 0.026596 0.090909 0.115385 0.088235 0.0 0.0 0.026596 0.060606 0.038462 0.058824 0.0 0.0 0.000000 0.045455 0.038462 0.000000 0.0 0.0 0.053191 0.196970 0.192308 0.147059 0.0 0.0 0.092010 9.333333 14.750000
357 JFK 19 0.078385 0.061728 0.081967 0.094595 0.0 0.0 0.033254 0.074074 0.049180 0.027027 0.0 0.0 0.019002 0.043210 0.032787 0.040541 0.0 0.0 0.130641 0.179012 0.163934 0.162162 0.0 0.0 0.119342 8.200000 23.707317
397 JFK 20 0.007407 0.160000 0.051282 0.041667 0.0 0.0 0.022222 0.040000 0.076923 0.083333 0.0 0.0 0.037037 0.040000 0.025641 0.000000 0.0 0.0 0.066667 0.240000 0.153846 0.125000 0.0 0.0 0.099668 8.000000 18.812500
398 JFK 21 0.067829 0.089474 0.074074 0.071429 0.0 0.0 0.029070 0.068421 0.049383 0.071429 0.0 0.0 0.027132 0.031579 0.030864 0.030612 0.0 0.0 0.124031 0.189474 0.154321 0.173469 0.0 0.0 0.113691 5.571429 32.025641
402 JFK 22 0.076087 0.065574 0.090909 0.100000 0.0 0.0 0.043478 0.049180 0.072727 0.066667 0.0 0.0 0.016304 0.049180 0.018182 0.033333 0.0 0.0 0.135870 0.163934 0.181818 0.200000 0.0 0.0 0.121718 4.333333 32.230769

Comments:

  • The output is calculated from dummy data at flight level (dummied passenger counts, ancillary purchases, etc.), assuming there are 6 tiers (0-5) and 3 channels to purchase upgrade (Web, Call Centre, and Airport).
  • The features are at the level of departure origin station x departure hour. For example, orgavg_1_Airport_upd_rate_per_hr is the average upgrade purchase rate of tier 1 customers of all flights per origin station per departure hour.

DM Scenario 2


In [8]:
leg_df = pd.read_csv(src_path+"DemandLastMile.csv")
leg_df.head(10)


Out[8]:
SCH_LEG_ORIG_CD SCH_LEG_DEST_CD FLT_MONTH DELTA_MONTH prediction TGT_AMT opportunity
0 LAX JFK 2016-07 1.0 22764.020251 22414.0 -350.020251
1 LAX JFK 2016-08 2.0 24187.356299 28498.0 4310.643701
2 LAX JFK 2016-09 3.0 25618.868157 23918.0 -1700.868157
3 LAX JFK 2016-10 4.0 25268.401609 32324.0 7055.598391
4 LAX JFK 2016-11 5.0 22362.378033 27862.0 5499.621967
5 LAX JFK 2016-12 6.0 22890.492109 24830.0 1939.507891

Comment: assume we stand at 2016-06 to predict future demand by month


In [ ]: