In [1]:
import smv
from pandas import *
pandas.set_option('display.max_columns', None)
pandas.set_option('display.max_rows', 20)
import numpy as np
src_path = "/Users/xingyuwu/Documents/Datasense/Product/Demo_Output/"
proj_nm = "com.datasenseanalytics.pluto.airlinedemo."
In [3]:
corp_raw = ddf(proj_nm+"feature.CorpQuarterFeature")
corp_df = corp_raw.toPandas()
corp_df.head(10)
Out[3]:
| Feature | Descriptipn |
|---|---|
| corpcnt_tvl_seg_per_qt | count travelled segments of a corporate account per quarter |
| corpcnt_cm_tvl_per_qt | count distinct # of travelled customers of a corporate account per quarter |
| corpcnt_cm_dly2hr_per_qt | count distinct # of customers with >2hr delay of a corporate account per quarter |
| corpcnt_seg_dly2hr_per_qt | count segments with >2hr delay of a corporate account per quarter |
In [7]:
leg_df = pd.read_csv(src_path+"LegOrgStnFeature.csv")
leg_df[leg_df.SCH_LEG_ORIG_CD == """JFK"""]
Out[7]:
Comments:
In [8]:
leg_df = pd.read_csv(src_path+"DemandLastMile.csv")
leg_df.head(10)
Out[8]:
Comment: assume we stand at 2016-06 to predict future demand by month
In [ ]: