In [ ]:
%%HTML
<style>
.container { width:100% }
</style>
In [ ]:
import graphviz as gv
The function $\texttt{toDot}(\texttt{Parent})$ takes a dictionary $\texttt{Parent}$.
For every node $x$, $\texttt{Parent}[x]$ is the parent of $x$. It draws this dictionary
as a family tree using graphviz
.
In [ ]:
def toDot(Parent):
dot = gv.Digraph()
M = Parent.keys()
for x in M:
p = Parent[x]
dot.node(str(x))
if x == p:
dot.edge(str(p), str(x), dir='back', headport='nw', tailport='ne')
else:
dot.edge(str(p), str(x), dir='back')
return dot
Given a set $M$ and a binary relation $R \subseteq M \times M$, the function $\texttt{union_find}$ returns a partition $\mathcal{P}$ of $M$ such that we have $$ \forall \langle x, y \rangle \in R: \exists S \in \mathcal{P}: \bigl(x \in S \wedge y \in S\bigr) $$ The resulting partition defines the equivalence relation that is generated by $R$.
In [ ]:
def union_find(M, R):
Parent = { x: x for x in M }
Height = { x: 1 for x in M }
for x, y in R:
print(f'{x} ≅ {y}')
root_x = find(x, Parent)
root_y = find(y, Parent)
if root_x != root_y:
if Height[root_x] < Height[root_y]:
Parent[root_x] = root_y
elif Height[root_x] > Height[root_y]:
Parent[root_y] = root_x
else:
Parent[root_y] = root_x
Height[root_x] += 1
display(toDot(Parent))
Roots = { x for x in M if Parent[x] == x }
return [{y for y in M if find(y, Parent) == r} for r in Roots]
Given a dictionary Parent
and an element $x$ from $M$, the function $\texttt{find}(x, \texttt{Parent})$
returns the ancestor of $x$ that is its own parent.
In [ ]:
def find(x, Parent):
p = Parent[x]
if p == x:
return x
return find(p, Parent)
In [ ]:
def demo():
M = set(range(1, 10))
R = { (1, 4), (7, 9), (3, 5), (2, 6), (5, 8), (1, 9), (4, 7) }
P = union_find(M, R)
return P
In [ ]:
demo()
The former worst case is now actually the best case.
In [ ]:
def worst_case(n):
M = set(range(1, n+1))
R = [ (k+1, k) for k in M if k < n ]
print(f'R = {R}')
P = union_find(M, R)
print(f'P = {P}')
In [ ]:
worst_case(10)
If the pairs are combined more or less randomly, the trees grow at most logarithmically.
In [ ]:
def worst_case_set(n):
M = set(range(1, n+1))
R = { (k+1, k) for k in M if k < n }
print(f'R = {R}')
P = union_find(M, R)
print(f'P = {P}')
In [ ]:
worst_case_set(30)
In [ ]: