In [0]:
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
%pylab inline
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
from tensorflow import keras
In [0]:
!curl -O https://raw.githubusercontent.com/DJCordhose/deep-learning-crash-course-notebooks/master/data/insurance-customers-1500.csv
In [0]:
df = pd.read_csv('./insurance-customers-1500.csv', sep=';')
y = df['group']
df.drop('group', axis='columns', inplace=True)
X = df.as_matrix()
In [0]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
In [0]:
from tensorflow.keras.layers import Dense
model = keras.Sequential()
model.add(Dense(units=50, activation='relu', input_dim=3))
model.add(Dense(units=3, activation='softmax'))
model.summary()
In [0]:
BATCH_SIZE=1000
EPOCHS = 2000
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
%time history = model.fit(X_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE, validation_split=0.2, verbose=0)
In [0]:
train_loss, train_accuracy = model.evaluate(X_train, y_train, batch_size=BATCH_SIZE)
train_accuracy
Out[0]:
In [0]:
def plot_history(history, samples=100, init_phase_samples=None):
epochs = history.params['epochs']
acc = history.history['acc']
val_acc = history.history['val_acc']
every_sample = int(epochs / samples)
acc = pd.DataFrame(acc).iloc[::every_sample, :]
val_acc = pd.DataFrame(val_acc).iloc[::every_sample, :]
fig, ax = plt.subplots(figsize=(20,5))
ax.plot(acc, 'bo', label='Training acc')
ax.plot(val_acc, 'b', label='Validation acc')
ax.set_title('Training and validation accuracy')
ax.legend()
plot_history(history)
In [0]:
model.predict(np.array([[100, 47, 10]]))
Out[0]:
In [0]:
test_loss, test_accuracy = model.evaluate(X_test, y_test, batch_size=BATCH_SIZE)
test_accuracy