In [0]:
!pip install git+https://github.com/openai/baselines >/dev/null
!pip install gym >/dev/null
In [0]:
import numpy as np
import random
import gym
from gym.utils import seeding
from gym import spaces
def state_name_to_int(state):
state_name_map = {
'S': 0,
'A': 1,
'B': 2,
'C': 3,
'D': 4,
'E': 5,
'F': 6,
'G': 7,
'H': 8,
'K': 9,
'L': 10,
'M': 11,
'N': 12,
'O': 13
}
return state_name_map[state]
def int_to_state_name(state_as_int):
state_map = {
0: 'S',
1: 'A',
2: 'B',
3: 'C',
4: 'D',
5: 'E',
6: 'F',
7: 'G',
8: 'H',
9: 'K',
10: 'L',
11: 'M',
12: 'N',
13: 'O'
}
return state_map[state_as_int]
class BeraterEnv(gym.Env):
"""
The Berater Problem
Actions:
There are 4 discrete deterministic actions, each choosing one direction
"""
metadata = {'render.modes': ['ansi']}
showStep = False
showDone = True
envEpisodeModulo = 100
def __init__(self):
# self.map = {
# 'S': [('A', 100), ('B', 400), ('C', 200 )],
# 'A': [('B', 250), ('C', 400), ('S', 100 )],
# 'B': [('A', 250), ('C', 250), ('S', 400 )],
# 'C': [('A', 400), ('B', 250), ('S', 200 )]
# }
self.map = {
'S': [('A', 300), ('B', 100), ('C', 200 )],
'A': [('S', 300), ('B', 100), ('E', 100 ), ('D', 100 )],
'B': [('S', 100), ('A', 100), ('C', 50 ), ('K', 200 )],
'C': [('S', 200), ('B', 50), ('M', 100 ), ('L', 200 )],
'D': [('A', 100), ('F', 50)],
'E': [('A', 100), ('F', 100), ('H', 100)],
'F': [('D', 50), ('E', 100), ('G', 200)],
'G': [('F', 200), ('O', 300)],
'H': [('E', 100), ('K', 300)],
'K': [('B', 200), ('H', 300)],
'L': [('C', 200), ('M', 50)],
'M': [('C', 100), ('L', 50), ('N', 100)],
'N': [('M', 100), ('O', 100)],
'O': [('N', 100), ('G', 300)]
}
max_paths = 4
self.action_space = spaces.Discrete(max_paths)
positions = len(self.map)
# observations: position, reward of all 4 local paths, rest reward of all locations
# non existing path is -1000 and no position change
# look at what #getObservation returns if you are confused
low = np.append(np.append([0], np.full(max_paths, -1000)), np.full(positions, 0))
high = np.append(np.append([positions - 1], np.full(max_paths, 1000)), np.full(positions, 1000))
self.observation_space = spaces.Box(low=low,
high=high,
dtype=np.float32)
self.reward_range = (-1, 1)
self.totalReward = 0
self.stepCount = 0
self.isDone = False
self.envReward = 0
self.envEpisodeCount = 0
self.envStepCount = 0
self.reset()
self.optimum = self.calculate_customers_reward()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def iterate_path(self, state, action):
paths = self.map[state]
if action < len(paths):
return paths[action]
else:
# sorry, no such action, stay where you are and pay a high penalty
return (state, 1000)
def step(self, action):
destination, cost = self.iterate_path(self.state, action)
lastState = self.state
customerReward = self.customer_reward[destination]
reward = (customerReward - cost) / self.optimum
self.state = destination
self.customer_visited(destination)
done = destination == 'S' and self.all_customers_visited()
stateAsInt = state_name_to_int(self.state)
self.totalReward += reward
self.stepCount += 1
self.envReward += reward
self.envStepCount += 1
if self.showStep:
print( "Episode: " + ("%4.0f " % self.envEpisodeCount) +
" Step: " + ("%4.0f " % self.stepCount) +
lastState + ' --' + str(action) + '-> ' + self.state +
' R=' + ("% 2.2f" % reward) + ' totalR=' + ("% 3.2f" % self.totalReward) +
' cost=' + ("%4.0f" % cost) + ' customerR=' + ("%4.0f" % customerReward) + ' optimum=' + ("%4.0f" % self.optimum)
)
if done and not self.isDone:
self.envEpisodeCount += 1
if BeraterEnv.showDone:
episodes = BeraterEnv.envEpisodeModulo
if (self.envEpisodeCount % BeraterEnv.envEpisodeModulo != 0):
episodes = self.envEpisodeCount % BeraterEnv.envEpisodeModulo
print( "Done: " +
("episodes=%6.0f " % self.envEpisodeCount) +
("avgSteps=%6.2f " % (self.envStepCount/episodes)) +
("avgTotalReward=% 3.2f" % (self.envReward/episodes) )
)
if (self.envEpisodeCount%BeraterEnv.envEpisodeModulo) == 0:
self.envReward = 0
self.envStepCount = 0
self.isDone = done
observation = self.getObservation(stateAsInt)
info = {"from": self.state, "to": destination}
return observation, reward, done, info
def getObservation(self, position):
result = np.array([ position,
self.getPathObservation(position, 0),
self.getPathObservation(position, 1),
self.getPathObservation(position, 2),
self.getPathObservation(position, 3)
],
dtype=np.float32)
all_rest_rewards = list(self.customer_reward.values())
result = np.append(result, all_rest_rewards)
return result
def getPathObservation(self, position, path):
source = int_to_state_name(position)
paths = self.map[self.state]
if path < len(paths):
target, cost = paths[path]
reward = self.customer_reward[target]
result = reward - cost
else:
result = -1000
return result
def customer_visited(self, customer):
self.customer_reward[customer] = 0
def all_customers_visited(self):
return self.calculate_customers_reward() == 0
def calculate_customers_reward(self):
sum = 0
for value in self.customer_reward.values():
sum += value
return sum
def modulate_reward(self):
number_of_customers = len(self.map) - 1
number_per_consultant = int(number_of_customers/2)
# number_per_consultant = int(number_of_customers/1.5)
self.customer_reward = {
'S': 0
}
for customer_nr in range(1, number_of_customers + 1):
self.customer_reward[int_to_state_name(customer_nr)] = 0
# every consultant only visits a few random customers
samples = random.sample(range(1, number_of_customers + 1), k=number_per_consultant)
key_list = list(self.customer_reward.keys())
for sample in samples:
self.customer_reward[key_list[sample]] = 1000
def reset(self):
self.totalReward = 0
self.stepCount = 0
self.isDone = False
self.modulate_reward()
self.state = 'S'
return self.getObservation(state_name_to_int(self.state))
def render(self):
print(self.customer_reward)
In [3]:
env = BeraterEnv()
print(env.reset())
print(env.customer_reward)
In [4]:
BeraterEnv.showStep = True
BeraterEnv.showDone = True
env = BeraterEnv()
print(env)
observation = env.reset()
print(observation)
for t in range(1000):
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1))
break
env.close()
print(observation)
In [0]:
from copy import deepcopy
import json
class Baseline():
def __init__(self, env):
self.map = env.map
self.rewards = env.customer_reward.copy()
def as_string(self, state):
# reward/cost does not hurt, but is useless, path obsucres same state
new_state = {
'rewards': state['rewards'],
'position': state['position']
}
return json.dumps(new_state, sort_keys=True)
def is_goal(self, state):
if state['position'] != 'S': return False
for reward in state['rewards'].values():
if reward != 0: return False
return True
def expand(self, state):
states = []
for position, cost in self.map[state['position']]:
new_state = deepcopy(state)
new_state['position'] = position
new_state['rewards'][position] = 0
reward = state['rewards'][position]
new_state['reward'] += reward
new_state['cost'] += cost
new_state['path'].append(position)
states.append(new_state)
return states
def search(self, root, max_depth = 25):
closed = set()
open = [root]
while open:
state = open.pop(0)
if self.as_string(state) in closed: continue
closed.add(self.as_string(state))
depth = len(state['path'])
if depth > max_depth:
print("Visited:", len(closed))
print("Reached max depth, without reaching goal")
return None
if self.is_goal(state):
print("Scaled reward:", (state['reward'] - state['cost']) / 6000)
print("Perfect path", state['path'])
return state
expanded = self.expand(state)
open += expanded
# make this best first
open.sort(key=lambda state: state['cost'])
def find_optimum(self):
initial_state = {
'rewards': self.rewards.copy(),
'position': 'S',
'reward': 0,
'cost': 0,
'path': ['S']
}
return self.search(initial_state)
Estimation
In [5]:
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
print(tf.__version__)
In [0]:
!rm -r logs
!mkdir logs
!mkdir logs/berater
In [7]:
# https://github.com/openai/baselines/blob/master/baselines/deepq/experiments/train_pong.py
# log_dir = logger.get_dir()
log_dir = '/content/logs/berater/'
import gym
from baselines import bench
from baselines import logger
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.vec_monitor import VecMonitor
from baselines.ppo2 import ppo2
BeraterEnv.showStep = False
BeraterEnv.showDone = False
env = BeraterEnv()
wrapped_env = DummyVecEnv([lambda: BeraterEnv()])
monitored_env = VecMonitor(wrapped_env, log_dir)
# https://github.com/openai/baselines/blob/master/baselines/ppo2/ppo2.py
# https://github.com/openai/baselines/blob/master/baselines/common/models.py#L30
# lr linear from lr=1e-2 to lr=1e-4 (default lr=3e-4)
def lr_range(frac):
# we get the remaining updates between 1 and 0
start_lr = 1e-2
end_lr = 1e-4
diff_lr = start_lr - end_lr
lr = end_lr + diff_lr * frac
return lr
%time model = ppo2.learn(\
env=monitored_env,\
network='mlp',\
num_hidden=100,\
num_layers=2,\
lr=lr_range,\
gamma=1.0,\
ent_coef=0,\
total_timesteps=500000)
model.save('berater-ppo-v9.pkl')
monitored_env.close()
https://github.com/openai/baselines/blob/master/docs/viz/viz.ipynb
In [0]:
# !ls -l $log_dir
In [11]:
from baselines.common import plot_util as pu
results = pu.load_results(log_dir)
import matplotlib.pyplot as plt
import numpy as np
r = results[0]
plt.ylim(0, .75)
# plt.plot(np.cumsum(r.monitor.l), r.monitor.r)
plt.plot(np.cumsum(r.monitor.l), pu.smooth(r.monitor.r, radius=100))
Out[11]:
In [74]:
import numpy as np
observation = env.reset()
env.render()
baseline = Baseline(env)
In [75]:
state = np.zeros((1, 2*128))
dones = np.zeros((1))
BeraterEnv.showStep = True
BeraterEnv.showDone = False
for t in range(1000):
actions, _, state, _ = model.step(observation, S=state, M=dones)
observation, reward, done, info = env.step(actions[0])
if done:
print("Episode finished after {} timesteps".format(t+1))
break
env.close()
In [76]:
%time optimum = baseline.find_optimum()
In [0]: