In [1]:
import warnings
warnings.filterwarnings('ignore')
In [2]:
%matplotlib inline
%pylab inline
In [3]:
# Evtl. hat Azure nur 0.19, wir brauchen aber .20 für das Plotting, dann das hier installieren und Notebook neu starten
# !conda update pandas -y
In [4]:
import pandas as pd
print(pd.__version__)
http://scikit-learn.org/stable/auto_examples/datasets/plot_random_dataset.html
http://scikit-learn.org/stable/datasets/index.html#sample-generators
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
Plot several randomly generated 2D classification datasets.
This example illustrates the :func:datasets.make_classification
:func:datasets.make_blobs
and :func:datasets.make_gaussian_quantiles
functions.
For make_classification
, three binary and two multi-class classification
datasets are generated, with different numbers of informative features and
clusters per class.
In [5]:
import numpy as np
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
# http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs
# https://www.welt.de/motor/news/article156991316/Unfallstatistik-2015.html
# http://www.openculture.com/2017/12/why-incompetent-people-think-theyre-amazing.html
# 0: young drivers with fast cars: red
# 1: reasonable drivers: green
# 2: a little bit older, more kilometers, general noise: yellow
# 3: really old drivers: red
# 4: young drivers: red
# 5: another green just to have a counter part to all the red ones: green
# 6: people who do not drive a lot: green
# 7: people who drive a lot: yellow
# 8: young people with slow cars: yellow
centers = [(200, 35, 50), (160, 50, 25), (170, 55, 30), (170, 75, 20), (170, 30, 30), (190, 45, 40), (160, 40, 15), (180, 50, 45), (140, 25, 15)]
cluster_std = [4, 9, 18, 8, 9, 5, 8, 12, 5]
X, y = make_blobs(n_samples=300, n_features=3, centers=centers, random_state=42, cluster_std = cluster_std)
# http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
# X, y = make_classification(n_features=3, n_redundant=0, n_informative=3,
# n_clusters_per_class=2, n_classes=3, random_state=42)
feature_names = ['max speed', 'age' ,'thousand km per year']
df = pd.DataFrame(X, columns=feature_names)
df = df.round()
# https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.clip.html
df['max speed'] = df['max speed'].clip(90,400)
df['age'] = df['age'].clip(18,90)
df['thousand km per year'] = df['thousand km per year'].clip(5,500)
X = df.as_matrix()
# merges clusters into one group
for group in np.nditer(y, op_flags=['readwrite']):
if group == 3 or group == 4:
group[...] = 0
if group == 5 or group == 6:
group[...] = 1
if group == 7 or group == 8:
group[...] = 2
In [6]:
df.describe()
Out[6]:
In [7]:
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
plt.clf()
plt.figure(figsize=(20, 20))
CMAP = ListedColormap(['#AA4444', '#006000', '#FFFF00'])
pd.plotting.scatter_matrix(df, c=y, cmap=CMAP, s=500, edgecolor='black', figsize=(20, 20), diagonal='kde')
plt.show()
In [8]:
from sklearn.model_selection import train_test_split
In [9]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42, stratify=y)
In [10]:
X_train.shape, y_train.shape, X_test.shape, y_test.shape
Out[10]:
In [11]:
from sklearn import neighbors
In [12]:
# ignore this, it is just technical code
# should come from a lib, consider it to appear magically
# http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
cmap_bold = ListedColormap(['#AA4444', '#006000', '#AAAA00'])
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#FFFFDD'])
font_size=25
def meshGrid(x_data, y_data):
h = 1 # step size in the mesh
x_min, x_max = x_data.min() - 1, x_data.max() + 1
y_min, y_max = y_data.min() - 1, y_data.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
return (xx,yy)
def plotPrediction(clf, x_data, y_data, x_label, y_label, colors, title="", mesh=True):
xx,yy = meshGrid(x_data, y_data)
Z = clf.predict(np.c_[yy.ravel(), xx.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(figsize=(20,10))
if mesh:
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.scatter(x_data, y_data, c=colors, cmap=cmap_bold, s=80, marker='o')
plt.xlabel(x_label, fontsize=font_size)
plt.ylabel(y_label, fontsize=font_size)
plt.title(title, fontsize=font_size)
In [13]:
X_train_kmh_age = X_train[:, :2]
X_test_kmh_age = X_test[:, :2]
In [14]:
X_train_2_dim = X_train_kmh_age
X_test_2_dim = X_test_kmh_age
In [19]:
# 0: red
# 1: green
# 2: yellow
class ClassifierBase:
def predict(self, X):
return np.array([ self.predict_single(x) for x in X])
def score(self, X, y):
n = len(y)
correct = 0
predictions = self.predict(X)
for prediction, ground_truth in zip(predictions, y):
if prediction == ground_truth:
correct = correct + 1
return correct / n
class BaseLineClassifier(ClassifierBase):
def predict_single(self, x):
try:
speed, age, km_per_year = x
except:
speed, age = x
km_per_year = 0
if age < 25:
if speed > 180:
return 0
else:
return 2
if age > 75:
return 0
if km_per_year > 50:
return 0
if km_per_year > 35:
return 2
return 1
from random import randrange
class RandomClassifier(ClassifierBase):
def predict_single(self, x):
return randrange(3)
In [26]:
from scipy.stats import norm
In [27]:
age_threshold = 0.01
ages = np.linspace(17, 90, 100)
def is_young(age):
return norm.pdf(age, loc=20, scale=3)
def good_age(age):
return norm.pdf(age, loc=45, scale=5)
def is_old(age):
return norm.pdf(age, loc=90, scale=8)
plt.plot(ages, is_young(ages), 'r', lw=2, alpha=0.5)
plt.plot(ages, good_age(ages), 'g', lw=2, alpha=0.5)
plt.plot(ages, is_old(ages), 'r', lw=2, alpha=0.5)
plt.plot(ages, np.full(100, age_threshold), 'gray', lw=2, alpha=0.5)
plt.ylabel('PDF')
plt.xlabel('Age')
Out[27]:
In [85]:
kms = np.linspace(0, 100, 100)
kms_threshold = 0.005
def no_practice(km):
return norm.pdf(km, loc=1, scale=3)
def much_driving(km):
return norm.pdf(km, loc=100, scale=20)
def sweet_spot(km):
return norm.pdf(km, loc=20, scale=5)
plt.plot(kms, no_practice(kms), 'r', lw=2, alpha=0.5)
plt.plot(kms, much_driving(kms), 'r', lw=2, alpha=0.5)
plt.plot(kms, sweet_spot(kms), 'g', lw=2, alpha=0.5)
plt.plot(kms, np.full(100, kms_threshold), 'gray', lw=2, alpha=0.5)
plt.ylabel('PDF')
plt.xlabel('thousand km per year')
Out[85]:
In [29]:
kmhs = np.linspace(90, 250, 100)
kmhs_threshold = 0.002
def too_fast(kmh):
return norm.pdf(kmh, loc=250, scale=30)
plt.plot(kmhs, too_fast(kmhs), 'r', lw=2, alpha=0.5)
plt.plot(kmhs, np.full(100, kmhs_threshold), 'gray', lw=2, alpha=0.5)
plt.ylabel('PDF')
plt.xlabel('km/h')
Out[29]:
In [38]:
def predict(x):
speed, age, km_per_year = x
if (is_young(age) > age_threshold or is_old(age) > age_threshold
or too_fast(speed) > kmhs_threshold
or no_practice(km_per_year) > kms_threshold or much_driving(km_per_year) > kms_threshold):
return 0
if good_age(age) > age_threshold or sweet_spot(km_per_year) > kms_threshold:
return 1
return 2
class StatsClassifier(ClassifierBase):
def predict_single(self, x):
try:
speed, age, km_per_year = x
except:
speed, age = x
km_per_year = 40
return predict([speed, age, km_per_year])
In [40]:
predict([190, 47, 10])
Out[40]:
In [42]:
X_train[0]
Out[42]:
In [63]:
stats_clf = StatsClassifier()
stats_clf.predict_single(X_train[0])
Out[63]:
In [64]:
stats_clf.score(X_train_2_dim, y_train)
Out[64]:
In [65]:
stats_clf.score(X, y)
Out[65]:
In [62]:
plotPrediction(stats_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age (Stats Model)")
In [127]:
age_factor = 1
kmhs_factor = 10
kms_factor = 0.5
def scoring(x):
speed, age, km_per_year = x
pos_score = good_age(age) * age_factor + sweet_spot(km_per_year) * kms_factor
neg_score = (is_young(age) * age_factor + is_old(age) * age_factor
+ too_fast(speed) * kmhs_factor
+ no_practice(km_per_year) * kms_factor + much_driving(km_per_year) * kms_factor)
return pos_score - neg_score
score_threshold = 0.01
def predict_for_score(x):
score = scoring(x)
if abs(score) < score_threshold:
return 2
if score < 0:
return 0
return 1
class ScoringStatsClassifier(ClassifierBase):
def predict_single(self, x):
try:
speed, age, km_per_year = x
except:
speed, age = x
km_per_year = 40
return predict_for_score([speed, age, km_per_year])
In [128]:
scoring_stats_clf = ScoringStatsClassifier()
scoring_stats_clf.predict_single(X_train[0])
Out[128]:
In [132]:
scoring_stats_clf.score(X_train_2_dim, y_train)
Out[132]:
In [133]:
scoring_stats_clf.score(X_test_2_dim, y_test)
Out[133]:
In [134]:
scoring_stats_clf.score(X, y)
Out[134]:
In [131]:
plotPrediction(scoring_stats_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age (Scoring Stats Model)")
In [35]:
random_clf = RandomClassifier()
random_clf.predict_single(X_train[0])
Out[35]:
In [57]:
random_clf.score(X, y)
Out[57]:
In [58]:
plotPrediction(random_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age (Random)")
In [45]:
base_clf = BaseLineClassifier()
base_clf.predict_single(X_train[0])
Out[45]:
In [46]:
base_clf.predict_single(array([ 137., 23.]))
Out[46]:
In [47]:
samples = np.array([X_train[0], X_train[1]])
samples
Out[47]:
In [48]:
ground_truth = np.array([y_train[0], y_train[1]])
ground_truth
Out[48]:
In [49]:
base_clf.predict(samples)
Out[49]:
In [50]:
base_clf.score(samples, ground_truth)
Out[50]:
In [51]:
base_clf.score(X_train, y_train)
Out[51]:
In [53]:
base_clf.score(X_train_2_dim, y_train)
Out[53]:
In [54]:
base_clf.score(X, y)
Out[54]:
In [66]:
plotPrediction(base_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train, mesh=False,
title="Train Data Max Speed vs Age")
In [67]:
plotPrediction(base_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age with Classification")
In [68]:
clf = neighbors.KNeighborsClassifier(1)
%time clf.fit(X_train_2_dim, y_train)
Out[68]:
In [69]:
plotPrediction(clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age with Classification")
In [70]:
clf.score(X_train_2_dim, y_train)
Out[70]:
In [71]:
plotPrediction(clf, X_test_2_dim[:, 1], X_test_2_dim[:, 0],
'Age', 'Max Speed', y_test,
title="Test Data Max Speed vs Age with Prediction")
In [72]:
clf.score(X_test_2_dim, y_test)
Out[72]:
In [73]:
clf = neighbors.KNeighborsClassifier(13)
%time clf.fit(X_train_2_dim, y_train)
Out[73]:
In [74]:
plotPrediction(clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age with Classification")
In [75]:
clf.score(X_train_2_dim, y_train)
Out[75]:
In [76]:
plotPrediction(clf, X_test_2_dim[:, 1], X_test_2_dim[:, 0],
'Age', 'Max Speed', y_test,
title="Test Data Max Speed vs Age with Prediction")
In [77]:
clf.score(X_test_2_dim, y_test)
Out[77]:
In [78]:
clf = neighbors.KNeighborsClassifier(13)
%time clf.fit(X_train, y_train)
Out[78]:
In [79]:
clf.score(X_train, y_train)
Out[79]:
In [80]:
clf.score(X_test, y_test)
Out[80]:
In [81]:
prediction = clf.predict(X)
y_pred = prediction
y_pred
Out[81]:
In [82]:
y_true = y
y_true
Out[82]:
In [83]:
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true, y_pred)
cm
Out[83]:
In [84]:
import seaborn as sns
sns.heatmap(cm, annot=True, cmap="YlGnBu")
figure = plt.gcf()
figure.set_size_inches(10, 10)
ax = figure.add_subplot(111)
ax.set_xlabel('Prediction')
ax.set_ylabel('Ground Truth')
Out[84]:
In [ ]: