In [1]:
import warnings
warnings.filterwarnings('ignore')
In [2]:
%matplotlib inline
%pylab inline
In [3]:
import pandas as pd
print(pd.__version__)
In [4]:
df = pd.read_csv('./insurance-customers-300.csv', sep=';')
In [5]:
y=df['group']
In [7]:
df.drop('group', axis='columns', inplace=True)
In [6]:
X = df.as_matrix()
In [8]:
df.describe()
Out[8]:
In [9]:
# ignore this, it is just technical code
# should come from a lib, consider it to appear magically
# http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
cmap_print = ListedColormap(['#AA8888', '#004000', '#FFFFDD'])
cmap_bold = ListedColormap(['#AA4444', '#006000', '#AAAA00'])
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#FFFFDD'])
font_size=25
def meshGrid(x_data, y_data):
h = 1 # step size in the mesh
x_min, x_max = x_data.min() - 1, x_data.max() + 1
y_min, y_max = y_data.min() - 1, y_data.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
return (xx,yy)
def plotPrediction(clf, x_data, y_data, x_label, y_label, colors, title="", mesh=True, fname=None):
xx,yy = meshGrid(x_data, y_data)
plt.figure(figsize=(20,10))
if clf and mesh:
Z = clf.predict(np.c_[yy.ravel(), xx.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
if fname:
plt.scatter(x_data, y_data, c=colors, cmap=cmap_print, s=200, marker='o', edgecolors='k')
else:
plt.scatter(x_data, y_data, c=colors, cmap=cmap_bold, s=80, marker='o', edgecolors='k')
plt.xlabel(x_label, fontsize=font_size)
plt.ylabel(y_label, fontsize=font_size)
plt.title(title, fontsize=font_size)
if fname:
plt.savefig(fname)
In [10]:
from sklearn.model_selection import train_test_split
In [11]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42, stratify=y)
In [12]:
X_train.shape, y_train.shape, X_test.shape, y_test.shape
Out[12]:
In [13]:
X_train_kmh_age = X_train[:, :2]
X_test_kmh_age = X_test[:, :2]
X_train_2_dim = X_train_kmh_age
X_test_2_dim = X_test_kmh_age
In [22]:
# 0: red
# 1: green
# 2: yellow
class ClassifierBase:
def predict(self, X):
return np.array([ self.predict_single(x) for x in X])
def score(self, X, y):
n = len(y)
correct = 0
predictions = self.predict(X)
for prediction, ground_truth in zip(predictions, y):
if prediction == ground_truth:
correct = correct + 1
return correct / n
from random import randrange
class RandomClassifier(ClassifierBase):
def predict_single(self, x):
return randrange(3)
In [17]:
random_clf = RandomClassifier()
In [48]:
plotPrediction(random_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age (Random)")
In [44]:
random_clf.score(X_test_2_dim, y_test)
Out[44]:
In [28]:
class BaseLineClassifier(ClassifierBase):
def predict_single(self, x):
try:
speed, age, km_per_year = x
except:
speed, age = x
km_per_year = 0
if age < 25:
if speed > 180:
return 0
else:
return 2
if age > 75:
return 0
if km_per_year > 50:
return 0
if km_per_year > 35:
return 2
return 1
In [34]:
base_clf = BaseLineClassifier()
In [49]:
plotPrediction(base_clf, X_train_2_dim[:, 1], X_train_2_dim[:, 0],
'Age', 'Max Speed', y_train,
title="Train Data Max Speed vs Age with Classification")
In [45]:
base_clf.score(X_test_2_dim, y_test)
Out[45]:
In [46]:
base_clf.score(X_train_2_dim, y_train)
Out[46]: