In [1]:
    
%matplotlib inline
from pylab import*
import numpy as np
    
In [2]:
    
from cvfit import fitting
from cvfit.fitting import SingleFitSession
from cvfit.fitting import MultipleFitSession
    
In [3]:
    
datasets, fname = fitting.load_data(example=True)
print('File {0} loaded'.format(fname))
print('{0:d} sets found.'.format(len(datasets)))
#sets = fitting.set_weights(sets)
for i in range(len(datasets)):
    print ('\nSet #{0:d}:'.format(i+1))
    print (datasets[i])
    
    
In [4]:
    
from cvfit.equations import Hill
eq = Hill('Hill')
fs = SingleFitSession(datasets[0], eq)
    
    
In [5]:
    
fs.fit()
fs.calculate_errors()
print(fs.string_estimates())
print(fs.string_liklimits())
    
    
In [6]:
    
fits = MultipleFitSession()
for each in datasets:
    eq = Hill('Hill')
    fs = SingleFitSession(each, eq)
    fits.add(fs)
    
    
In [7]:
    
for fs in fits.list:
    print("\n\tSTART FITTING ===============")
    fs.fit()
    fs.calculate_errors()
    print(fs.string_estimates())
    print(fs.string_liklimits())
    print("\n\tFITTING FINISHED ============")
print ("\nFINISHED FITTING ALL SETS")
    
    
In [8]:
    
fplots = fitsessions.prepare_fplot('fit')
fig = plots.cvfit_plot(datasets, fig=None, 
    fplotsets=fplots, fplotline='b-',
    logX=True, logY=False, legend=True)
    
    
In [ ]: