- action: global
title: Logon Scripts (UserInitMprLogonScript)
id: 0a98a10c-685d-4ab0-bddc-b6bdd1d48458
status: experimental
description: Detects creation or execution of UserInitMprLogonScript persistence
method
references:
- https://attack.mitre.org/techniques/T1037/
tags:
- attack.t1037
- attack.persistence
- attack.lateral_movement
author: Tom Ueltschi (@c_APT_ure)
falsepositives:
- exclude legitimate logon scripts
- penetration tests, red teaming
level: high
- logsource:
category: process_creation
product: windows
detection:
exec_selection:
ParentImage: '*\userinit.exe'
exec_exclusion1:
Image: '*\explorer.exe'
exec_exclusion2:
CommandLine: '*\netlogon.bat'
condition: exec_selection and not exec_exclusion1 and not exec_exclusion2
- logsource:
category: process_creation
product: windows
detection:
create_keywords_cli:
CommandLine: '*UserInitMprLogonScript*'
condition: create_keywords_cli
- logsource:
product: windows
service: sysmon
detection:
create_selection_reg:
EventID:
- 11
- 12
- 13
- 14
create_keywords_reg:
TargetObject: '*UserInitMprLogonScript*'
condition: create_selection_reg and create_keywords_reg
In [ ]:
from elasticsearch import Elasticsearch
from elasticsearch_dsl import Search
import pandas as pd
In [ ]:
es = Elasticsearch(['http://helk-elasticsearch:9200'])
searchContext = Search(using=es, index='logs-*', doc_type='doc')
In [ ]:
s = searchContext.query('query_string', query='((process_parent_path.keyword:*\\userinit.exe AND (NOT (process_path.keyword:*\\explorer.exe))) AND (NOT (process_command_line.keyword:*\\netlogon.bat)))')
response = s.execute()
if response.success():
df = pd.DataFrame((d.to_dict() for d in s.scan()))
In [ ]:
s = searchContext.query('query_string', query='process_command_line.keyword:*UserInitMprLogonScript*')
response = s.execute()
if response.success():
df = pd.DataFrame((d.to_dict() for d in s.scan()))
In [ ]:
s = searchContext.query('query_string', query='(event_id:("11" OR "12" OR "13" OR "14") AND registry_key_path.keyword:*UserInitMprLogonScript*)')
response = s.execute()
if response.success():
df = pd.DataFrame((d.to_dict() for d in s.scan()))
In [ ]:
df.head()