In [2]:
%autoreload 2
# to make life easier, import all the needed stuff from workspace
# With autoreload enabled this also has the added benefit of making imported functionality
# available to the notebook without the need to rerun the importing cell.
from workspace import *
In [3]:
from zipfile import ZipFile
In [8]:
with open("char-rnn-200.tar", 'rb') as src:
main_loop = load(src)
In [20]:
main_loop.profile.total
Out[20]:
defaultdict(int,
{('after_training',): 0,
('after_training', 'Checkpoint'): 0,
('after_training', 'DataStreamMonitoring'): 4.118200013181195e-05,
('after_training', 'FinishAfter'): 2.182299976993818e-05,
('after_training', 'Printing'): 0.0005432170000858605,
('before_training',): 0.0001758740000070702,
('before_training', 'Checkpoint'): 2.6424000012070792e-05,
('before_training',
'DataStreamMonitoring'): 4.230599999743845e-05,
('before_training', 'FinishAfter'): 1.5802999996594735e-05,
('before_training', 'Printing'): 5.913699999382516e-05,
('initialization',): 12.519453603999992,
('training',): 5399.65846744,
('training', 'after_epoch'): 328.7014877679999,
('training', 'after_epoch', 'Checkpoint'): 0.00019791700060523,
('training',
'after_epoch',
'DataStreamMonitoring'): 328.69686887100033,
('training',
'after_epoch',
'FinishAfter'): 0.00023483199993279413,
('training', 'after_epoch', 'Printing'): 0.0039027599998462392,
('training', 'before_epoch'): 53.11035492600064,
('training',
'before_epoch',
'Checkpoint'): 0.00018916799987778177,
('training',
'before_epoch',
'DataStreamMonitoring'): 53.10889230800095,
('training',
'before_epoch',
'FinishAfter'): 0.00010663299957514027,
('training', 'before_epoch', 'Printing'): 0.0009676560000286827,
('training', 'epoch'): 5017.845672419999,
('training', 'epoch', 'after_batch'): 57.47655860902859,
('training',
'epoch',
'after_batch',
'Checkpoint'): 57.07437302599712,
('training',
'epoch',
'after_batch',
'DataStreamMonitoring'): 0.11911356801181228,
('training',
'epoch',
'after_batch',
'FinishAfter'): 0.043368901008420835,
('training',
'epoch',
'after_batch',
'Printing'): 0.16034961599800113,
('training', 'epoch', 'before_batch'): 0.41696648099394906,
('training',
'epoch',
'before_batch',
'Checkpoint'): 0.06858534100032898,
('training',
'epoch',
'before_batch',
'DataStreamMonitoring'): 0.07985220100096058,
('training',
'epoch',
'before_batch',
'FinishAfter'): 0.04068121399637903,
('training',
'epoch',
'before_batch',
'Printing'): 0.15726627699314122,
('training', 'epoch', 'read_data'): 2.253004564981211,
('training', 'epoch', 'train'): 4957.513394170987})
In [ ]:
In [11]:
from word_embeddings import main_loop
In [3]:
main_loop.run()
-------------------------------------------------------------------------------
BEFORE FIRST EPOCH
-------------------------------------------------------------------------------
Training status:
batch_interrupt_received: False
epoch_interrupt_received: False
epoch_started: True
epochs_done: 0
iterations_done: 0
received_first_batch: False
resumed_from: None
training_started: True
Log records from the iteration 0:
test_simple_entropy_apply_cost: 5.717057105039682
-------------------------------------------------------------------------------
AFTER ANOTHER EPOCH
-------------------------------------------------------------------------------
Training status:
batch_interrupt_received: False
epoch_interrupt_received: False
epoch_started: False
epochs_done: 1
iterations_done: 23
received_first_batch: True
resumed_from: None
training_started: True
Log records from the iteration 23:
test_simple_entropy_apply_cost: 5.430238805431428
training_finish_requested: True
-------------------------------------------------------------------------------
TRAINING HAS BEEN FINISHED:
-------------------------------------------------------------------------------
Training status:
batch_interrupt_received: False
epoch_interrupt_received: False
epoch_started: False
epochs_done: 1
iterations_done: 23
received_first_batch: True
resumed_from: None
training_started: True
Log records from the iteration 23:
test_simple_entropy_apply_cost: 5.430238805431428
training_finish_requested: True
training_finished: True
Content source: Copper-Head/cogsys-deep-learning
Similar notebooks: