In [ ]:
%matplotlib inline
In [ ]:
# Code source: Andrew Heusser
# License: MIT
import quail
# generate some fake data
next_presented = ['CAT', 'DOG', 'SHOE', 'HORSE']
next_recalled = ['HORSE', 'DOG', 'CAT']
next_features = [{
'category' : 'animal',
'size' : 'bigger',
'starting letter' : 'C',
'length' : 3
},
{
'category' : 'animal',
'size' : 'bigger',
'starting letter' : 'D',
'length' : 3
},
{
'category' : 'object',
'size' : 'smaller',
'starting letter' : 'S',
'length' : 4
},
{
'category' : 'animal',
'size' : 'bigger',
'starting letter' : 'H',
'length' : 5
}
]
dist_funcs = {
'category' : 'lambda a, b: int(a!=b)',
'size' : 'lambda a, b: int(a!=b)',
'starting letter' : 'lambda a, b: int(a!=b)',
'length' : 'lambda a, b: np.linalg.norm(np.subtract(a,b))'
}
egg = quail.Egg(pres=[next_presented], rec=[next_recalled], features=[next_features], dist_funcs=dist_funcs)
egg.analyze('lagcrp').plot()