is an upper bound to the ground state energy $E_0$ of the hamiltonian $H$, that is
In general, the integrals involved in the calculation of various expectation values are multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre will not be adequate for say the computation of the energy of a many-body system.
The trial wave function can be expanded in the eigenstates of the hamiltonian since they form a complete set, viz.,
and assuming the set of eigenfunctions to be normalized one obtains
where we used that $H(\boldsymbol{R})\Psi_n(\boldsymbol{R})=E_n\Psi_n(\boldsymbol{R})$. In general, the integrals involved in the calculation of various expectation values are multi-dimensional ones. The variational principle yields the lowest state of a given symmetry.
In most cases, a wave function has only small values in large parts of configuration space, and a straightforward procedure which uses homogenously distributed random points in configuration space will most likely lead to poor results. This may suggest that some kind of importance sampling combined with e.g., the Metropolis algorithm may be a more efficient way of obtaining the ground state energy. The hope is then that those regions of configurations space where the wave function assumes appreciable values are sampled more efficiently.
The tedious part in a VMC calculation is the search for the variational minimum. A good knowledge of the system is required in order to carry out reasonable VMC calculations. This is not always the case, and often VMC calculations serve rather as the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way of solving exactly the many-body Schroedinger equation by means of a stochastic procedure. A good guess on the binding energy and its wave function is however necessary. A carefully performed VMC calculation can aid in this context.
$\boldsymbol{R}=(\boldsymbol{R}_1,\dots ,\boldsymbol{R}_N)$. The trial wave function depends on $\alpha$ variational parameters $\boldsymbol{\alpha}=(\alpha_1,\dots ,\alpha_M)$.
This is our new probability distribution function (PDF). The approximation to the expectation value of the Hamiltonian is now
called the local energy, which, together with our trial PDF yields
with $N$ being the number of Monte Carlo samples.
The Algorithm for performing a variational Monte Carlo calculations runs thus as this
Initialisation: Fix the number of Monte Carlo steps. Choose an initial $\boldsymbol{R}$ and variational parameters $\alpha$ and calculate $\left|\psi_T^{\alpha}(\boldsymbol{R})\right|^2$.
Initialise the energy and the variance and start the Monte Carlo calculation.
Calculate a trial position $\boldsymbol{R}_p=\boldsymbol{R}+r*step$ where $r$ is a random variable $r \in [0,1]$.
Metropolis algorithm to accept or reject this move $w = P(\boldsymbol{R}_p)/P(\boldsymbol{R})$.
If the step is accepted, then we set $\boldsymbol{R}=\boldsymbol{R}_p$.
Update averages
Observe that the jumping in space is governed by the variable step. This is Called brute-force sampling. Need importance sampling to get more relevant sampling, see lectures below.
The radial Schroedinger equation for the hydrogen atom can be written as
or with dimensionless variables
with the hamiltonian
Use variational parameter $\alpha$ in the trial wave function
A simple variational Monte Carlo calculation results in
$\alpha$ | $\langle H \rangle $ | $\sigma^2$ | $\sigma/\sqrt{N}$ |
---|---|---|---|
7.00000E-01 | -4.57759E-01 | 4.51201E-02 | 6.71715E-04 |
8.00000E-01 | -4.81461E-01 | 3.05736E-02 | 5.52934E-04 |
9.00000E-01 | -4.95899E-01 | 8.20497E-03 | 2.86443E-04 |
1.00000E-00 | -5.00000E-01 | 0.00000E+00 | 0.00000E+00 |
1.10000E+00 | -4.93738E-01 | 1.16989E-02 | 3.42036E-04 |
1.20000E+00 | -4.75563E-01 | 8.85899E-02 | 9.41222E-04 |
1.30000E+00 | -4.54341E-01 | 1.45171E-01 | 1.20487E-03 |
We note that at $\alpha=1$ we obtain the exact result, and the variance is zero, as it should. The reason is that we then have the exact wave function, and the action of the hamiltionan on the wave function
yields just a constant. The integral which defines various expectation values involving moments of the hamiltonian becomes then
This gives an important information: the exact wave function leads to zero variance! Variation is then performed by minimizing both the energy and the variance.
The helium atom consists of two electrons and a nucleus with
charge $Z=2$.
The contribution
to the potential energy due to the attraction from the nucleus is
and if we add the repulsion arising from the two interacting electrons, we obtain the potential energy
and Schroedingers equation reads
All observables are evaluated with respect to the probability distribution
2 1
< < < ! ! M A T H _ B L O C K
For small values of $r_1$, the terms which dominate are
and
A similar condition applies to electron 2 as well. For orbital momenta $l > 0$ we have
Similarly, studying the case $r_{12}\rightarrow 0$ we can write a possible trial wave function as
The last equation can be generalized to
for a system with $N$ electrons or particles.
During the development of our code we need to make several checks. It is also very instructive to compute a closed form expression for the local energy. Since our wave function is rather simple it is straightforward to find an analytic expressions. Consider first the case of the simple helium function
The local energy is for this case
which gives an expectation value for the local energy given by
which means that the gradient needed for the so-called quantum force and local energy can be calculated analytically. This will speed up your code since the computation of the correlation part and the Slater determinant are the most time consuming parts in your code.
We will refer to this correlation function as $\Psi_C$ or the linear Pade-Jastrow.
We can test this by computing the local energy for our helium wave function
with $\alpha$ and $\beta$ as variational parameters.
The local energy is for this case
It is very useful to test your code against these expressions. It means also that you don't need to compute a derivative numerically as discussed in the code example below.
For the computation of various derivatives with different types of wave functions, you will find it useful to use python with symbolic python, that is sympy, see URL: 'http://docs.sympy.org/latest/index.html'. Using sympy allows you autogenerate both Latex code as well c++, python or Fortran codes. Here you will find some simple examples. We choose the $2s$ hydrogen-orbital (not normalized) as an example
with $ r^2 = x^2 + y^2 + z^2$.
In [1]:
from sympy import symbols, diff, exp, sqrt
x, y, z, Z = symbols('x y z Z')
r = sqrt(x*x + y*y + z*z)
r
phi = (Z*r - 2)*exp(-Z*r/2)
phi
diff(phi, x)
In [1]:
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols('x y z Z')
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol('r') #Creates a symbolic equivalent of r
#print latex and c++ code
print printing.latex(diff(phi, x).factor().subs(r, R))
print printing.ccode(diff(phi, x).factor().subs(r, R))
In [1]:
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols('x y z Z')
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol('r') #Creates a symbolic equivalent of r
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().subs(r, R)
# Collect the Z values
(diff(diff(phi, x), x) + diff(diff(phi, y), y) +diff(diff(phi, z), z)).factor().collect(Z).subs(r, R)
# Factorize also the r**2 terms
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor()
print printing.ccode((diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor())
With some practice this allows one to be able to check one's own calculation and translate automatically into code lines.
Exercises for first lab session.
Implement the closed form expression for the local energy and the so-called quantum force
Convince yourself that the closed form expressions are correct.
Implement the closed form expressions for systems with more than two electrons.
Make another copy of your code.
Implement the closed form expression for the local energy and compare with a code where the second derivatives are computed numerically.