In this lab we will answer the question of how much of recent warming can be blamed on human activities. As we saw in class, a key part of this logical argument rests upon model simulations of the climate of last 150 years. The model results are from the Coupled Model Intercomparison Project Phase 5 (CMIP5), which is one of the scientific bases for IPCC Fifth Assessment Report (2013). The idea is to subject climate models to different forcings and see the pattern and magnitude of their responses. Forcings include greenhouse gases, anthropogenic aerosols, solar insolation, volcanic activities, land use and also on. Forcings like greenhouse gases and anthropogenic aerosols are anthropogenic, while forcings like volcanic activities are natural. How do they stack up?
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
About 20 modelling groups in the world participate in CMIP5, and each modelling group may have a few climate models. For each experiment, models are not just run once. Multiple runs are done that differ only slightly in their starting point. Thus, differences between these runs illustrate the range of “natural” climate variability: that is, the depict many plausible histories that climate could have followed. One consequence of this is that you cannot expect a given simulation to match osbervations exactly; instead, we seek combinations of forcings and models that well-reproduce trends, or certain events (e.g. volcanic cooling).
We start by reading in global mean near-surface temperature time series forced by all forcings and natural forcings in CMIP5 models. The simulations with all forcings are part of the so-called "historical" experiment, which aimed to reproduce the climate over 1851-2005. Simulations exposed only to natural forcings are called "historicalNat" experiment. Here temperature is defined as anomalies relative the 1850-1880 average for each simulation.
In [2]:
# Temperature response by All forcings
df_all = pd.read_pickle('tas_ann_cmip5_historical.pkl')
In [3]:
df_all
Out[3]:
Year
ACCESS1-0
ACCESS1-3
CCSM4
CESM1-BGC
CESM1-CAM5
CMCC-CMS
CNRM-CM5
CSIRO-Mk3-6-0
CanESM2
...
MIROC-ESM-CHEM
MIROC5
MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3
NorESM1-M
NorESM1-ME
bcc-csm1-1
bcc-csm1-1-m
inmcm4
0
1850
0.005912
-0.090138
0.000328
0.032450
0.041840
-0.024983
-0.038497
-0.105936
-0.006133
...
-0.023172
-0.042174
0.031862
0.074906
-0.098591
-0.038457
0.171138
-0.063076
-0.353140
-0.037016
1
1851
-0.081942
0.081735
0.081337
-0.049950
0.026731
0.196026
-0.059678
-0.033881
-0.004424
...
0.101046
-0.033038
0.031071
0.053088
-0.059391
-0.091666
0.195029
-0.166249
-0.266049
-0.007625
2
1852
-0.081842
-0.003265
-0.025781
-0.216741
0.000412
0.020135
-0.018497
0.028810
0.035603
...
0.049501
-0.048038
-0.014229
0.057443
-0.053328
0.017716
-0.020271
-0.120713
-0.319922
-0.067189
3
1853
0.119176
0.085608
0.020137
-0.105177
0.061067
-0.116801
0.126858
0.004928
0.053731
...
0.137610
0.058180
-0.018820
0.064770
-0.035837
-0.114511
-0.142171
0.003242
-0.156840
0.011602
4
1854
0.140703
0.200480
-0.139636
-0.017277
-0.025097
-0.006719
-0.186660
0.014873
0.164294
...
0.091219
-0.006702
-0.005611
0.073997
-0.052046
-0.093875
-0.034708
-0.068431
0.015642
-0.035816
5
1855
0.109676
-0.053574
-0.016299
0.109778
-0.103088
0.037190
-0.065115
0.037510
0.087994
...
-0.036772
-0.010502
-0.097284
0.101952
-0.053182
-0.060620
0.065174
-0.071149
-0.126767
-0.058080
6
1856
0.053167
0.011035
0.031328
-0.154813
-0.132788
-0.207247
0.040376
-0.018963
-0.077842
...
-0.011926
-0.012047
-0.092884
-0.051575
-0.166164
-0.166048
-0.076008
-0.102240
0.030551
-0.011789
7
1857
-0.022461
0.023153
-0.005263
-0.256022
-0.056415
-0.031438
-0.074397
-0.171254
-0.099024
...
-0.106517
-0.080592
-0.057066
-0.162203
-0.057428
0.017425
-0.050471
-0.426404
-0.325349
-0.044080
8
1858
-0.069161
-0.156874
-0.072536
-0.142895
-0.049469
0.066590
-0.050724
-0.137454
-0.088724
...
-0.047563
-0.071756
-0.050293
-0.080894
0.069882
0.033325
0.075283
-0.198722
-0.289140
-0.080044
9
1859
-0.129324
-0.122165
-0.067108
0.012832
-0.018160
-0.276092
-0.012697
-0.091281
-0.090497
...
0.000010
-0.121992
-0.062593
-0.001357
0.013909
-0.044248
0.189556
-0.069158
-0.014131
-0.104307
10
1860
0.022976
-0.108929
-0.051172
0.092405
-0.087306
-0.004947
0.028303
-0.036099
-0.029151
...
-0.031299
-0.099074
-0.066438
0.027415
0.010291
-0.121457
0.043292
0.030296
-0.067558
-0.118262
11
1861
-0.028642
-0.061229
-0.038390
0.079868
-0.112115
0.243290
0.074694
-0.026018
0.024485
...
-0.057135
-0.037011
-0.026648
-0.092548
0.025772
-0.008066
-0.014980
-0.042240
-0.102403
-0.048935
12
1862
-0.064642
-0.125011
-0.027108
0.017505
-0.005297
-0.073056
-0.028124
-0.103890
-0.016906
...
-0.046172
0.027398
-0.070520
-0.017875
0.054672
0.010498
0.053202
0.034505
-0.038085
-0.042762
13
1863
0.047276
-0.087638
-0.000454
-0.058322
0.144176
0.017390
-0.049578
-0.095018
-0.080806
...
0.019655
0.075971
-0.010566
0.006643
0.034809
-0.079648
0.009611
-0.219531
-0.022131
-0.068135
14
1864
0.049939
-0.063547
-0.035654
0.021350
0.030312
-0.114228
-0.023624
-0.095336
-0.122524
...
-0.078672
0.001326
-0.080529
-0.010421
0.018836
0.178171
-0.058562
-0.036658
0.091860
0.045920
15
1865
-0.055933
0.013071
-0.026408
0.012050
-0.018397
-0.093374
0.167822
-0.028136
-0.113569
...
-0.194472
-0.062411
-0.020084
0.003734
-0.012837
0.190271
-0.071862
-0.053413
-0.107894
0.078665
16
1866
-0.133479
0.031680
-0.047990
-0.027632
0.056294
0.270517
0.081776
0.016619
-0.072160
...
0.048174
-0.037274
-0.028148
0.104734
-0.047082
0.058080
-0.079644
-0.090176
-0.063931
-0.060280
17
1867
0.015021
-0.081447
-0.002754
-0.036786
0.021522
0.091372
-0.047469
0.026228
-0.011969
...
0.141992
-0.008411
0.116507
0.041670
-0.094800
0.012589
-0.079708
0.023251
0.053933
0.082538
18
1868
-0.041342
-0.131383
0.059055
0.133232
0.005894
0.032526
-0.046097
0.037892
-0.021633
...
0.112283
0.045608
0.103134
-0.009839
-0.015355
0.124280
-0.035889
-0.004204
0.079378
0.122175
19
1869
0.125685
-0.012538
0.049701
0.092778
0.051703
0.025172
0.024258
0.019155
0.045185
...
-0.113290
-0.003574
0.018089
-0.055775
-0.046782
0.040216
0.067838
0.054405
0.095869
0.096929
20
1870
-0.014342
0.117689
-0.068708
-0.165722
0.077794
-0.060347
-0.069906
-0.008527
0.086612
...
-0.060626
-0.036983
0.038707
0.034734
0.047409
-0.025511
0.032147
0.116133
0.105369
0.078438
21
1871
0.031085
-0.051474
0.009182
0.020505
0.009531
0.043481
-0.100242
0.001228
-0.003978
...
0.063901
0.033689
0.016152
0.025661
0.053418
-0.022484
0.089947
0.181824
0.116678
-0.056253
22
1872
-0.084242
-0.034174
0.044710
0.138614
0.046185
0.002662
0.045467
0.084855
0.077431
...
-0.043645
0.081662
-0.013229
-0.079430
0.083827
0.080316
0.062847
0.119051
0.150378
0.077493
23
1873
-0.025197
0.132971
0.095673
-0.131950
0.034267
-0.152738
-0.014624
0.111401
-0.014669
...
0.065565
0.068171
0.016089
-0.057475
0.007663
0.019625
-0.206598
0.194160
0.196578
0.084020
24
1874
0.086276
0.062689
0.053173
-0.022622
-0.023824
-0.058483
0.066312
0.107728
0.066067
...
0.053519
0.002780
0.097934
0.047925
0.133127
0.004980
-0.065289
0.161551
0.235588
0.029056
25
1875
0.008185
0.133044
0.084746
0.095905
0.003658
-0.081692
0.078958
0.102964
0.020212
...
-0.010572
0.102526
0.185116
0.069261
0.087291
-0.134575
0.017429
0.225396
0.141151
0.045084
26
1876
-0.046770
0.225162
0.098482
0.216459
-0.037688
-0.022856
-0.039824
0.082810
0.016203
...
-0.137017
0.172698
0.076752
-0.068212
0.102372
0.153298
-0.053053
0.145269
0.200542
0.167238
27
1877
-0.103788
0.040953
0.046419
0.152414
-0.020960
0.074772
0.020331
0.117646
0.069722
...
-0.012372
0.075826
0.054007
-0.031185
-0.119137
0.164825
0.049883
0.208760
0.197824
-0.003953
28
1878
0.088558
-0.027938
-0.057008
0.062250
0.020476
0.180017
0.129894
0.116328
0.065003
...
0.105619
0.032017
0.001162
-0.067975
0.003318
-0.062138
0.010511
0.030469
0.216497
-0.048589
29
1879
0.079476
0.052053
0.008001
0.095514
0.058740
0.023862
0.040703
0.040819
0.041467
...
0.021128
-0.066274
-0.071638
-0.001166
0.165363
-0.042311
-0.143671
0.204051
0.325497
-0.026044
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
131
1981
0.238403
0.108162
0.701337
0.882987
0.403131
0.121172
0.506685
0.278437
0.477703
...
0.517846
0.337535
0.628243
0.540879
0.340045
0.257425
0.435838
0.600769
0.775388
0.511175
132
1982
0.210685
0.151089
0.611701
0.770387
0.349976
0.029426
0.398967
0.250601
0.375994
...
0.373455
0.323253
0.609762
0.514143
0.362727
0.284334
0.438338
0.533742
0.628997
0.432093
133
1983
0.066739
0.236326
0.513346
0.423014
0.116867
0.055490
0.141403
0.115928
0.187985
...
0.315965
0.143153
0.485898
0.359988
0.361472
0.284571
0.219765
0.468433
0.599706
0.565784
134
1984
0.139130
0.165489
0.598773
0.504296
0.158576
0.395162
0.320558
0.214219
0.246140
...
0.379874
0.046998
0.586116
0.462434
0.398127
0.363007
0.359847
0.599433
0.606615
0.506575
135
1985
0.108776
0.212398
0.643446
0.544978
0.215512
0.455353
0.322776
0.263319
0.391422
...
0.619855
0.086726
0.555825
0.501752
0.401072
0.405643
0.296065
0.596296
0.660106
0.542320
136
1986
0.093894
0.198962
0.711910
0.599359
0.292231
0.215808
0.544022
0.252082
0.445694
...
0.509574
0.228244
0.586025
0.578670
0.195872
0.398443
0.244438
0.793224
0.766706
0.555920
137
1987
0.291394
0.321571
0.810492
0.605341
0.397040
0.096844
0.463785
0.323573
0.432867
...
0.468946
0.383489
0.634171
0.625797
0.325627
0.461962
0.380092
0.791115
0.826251
0.556365
138
1988
0.318230
0.176680
0.859182
0.820968
0.343322
0.269153
0.511003
0.381410
0.579203
...
0.632574
0.435980
0.601316
0.659697
0.281782
0.451862
0.453947
0.850460
0.827406
0.498275
139
1989
0.455085
0.257708
0.831055
0.807532
0.352449
0.409353
0.484158
0.403092
0.614494
...
0.701765
0.419308
0.861798
0.719125
0.402163
0.611671
0.413174
0.925133
1.046833
0.517911
140
1990
0.425112
0.290035
0.909146
0.782514
0.335822
0.436008
0.699985
0.459728
0.639385
...
0.692937
0.387253
0.957125
0.747497
0.416336
0.698998
0.623138
1.001515
1.012478
0.511511
141
1991
0.327676
0.379662
0.817646
0.663032
0.336031
0.526981
0.617085
0.441010
0.616931
...
0.662592
0.362889
0.789698
0.758179
0.443291
0.427734
0.418202
1.000060
0.858542
0.491584
142
1992
0.067067
0.149880
0.524192
0.393941
0.267240
0.687453
0.189812
0.162728
0.381349
...
0.295128
0.164871
0.440407
0.416670
0.138127
0.300771
0.168929
0.623042
0.558878
0.526184
143
1993
0.199112
0.181762
0.687664
0.532023
0.386385
0.640662
0.446949
0.220346
0.423385
...
0.359928
0.357444
0.496325
0.542952
0.258236
0.378298
0.135738
0.750778
0.685824
0.490402
144
1994
0.360512
0.201298
0.753273
0.684823
0.342667
0.611753
0.670431
0.243437
0.479867
...
0.327728
0.381417
0.652298
0.556997
0.156754
0.360543
0.245465
0.857515
0.786824
0.627138
145
1995
0.370839
0.234708
0.817128
0.853132
0.394576
0.418944
0.522622
0.358246
0.583522
...
0.606492
0.319626
0.763943
0.659888
0.359791
0.355262
0.311683
0.811051
0.881069
0.607020
146
1996
0.441358
0.290680
0.892019
0.880187
0.420731
0.471108
0.518612
0.439610
0.752422
...
0.733246
0.304471
0.813107
0.751961
0.418118
0.516780
0.291647
1.012969
1.112269
0.640875
147
1997
0.445348
0.301889
0.935864
1.088359
0.467967
0.743444
0.764394
0.456555
0.773367
...
0.656337
0.509353
0.847034
0.937370
0.380600
0.497352
0.306538
1.052915
1.019224
0.579256
148
1998
0.549994
0.446962
1.051110
1.016923
0.586912
0.649935
0.671412
0.443973
0.826358
...
0.721846
0.575189
0.903371
0.944015
0.415882
0.535143
0.420420
1.040769
1.258606
0.583084
149
1999
0.669203
0.364680
1.102637
1.099650
0.608022
0.484926
0.667149
0.566119
0.905731
...
0.725937
0.575298
0.856798
0.908006
0.385018
0.706662
0.563192
1.069578
1.207333
0.631875
150
2000
0.676476
0.316262
1.130764
1.086141
0.566022
0.592535
0.822294
0.649564
0.950349
...
0.658283
0.621562
0.897289
0.960215
0.458436
0.641843
0.719892
1.066542
1.169342
0.662120
151
2001
0.641921
0.437317
1.203801
1.008859
0.615131
0.892117
0.749912
0.660010
0.881376
...
0.872710
0.686917
0.925562
0.986070
0.455045
0.609643
0.680374
1.108033
1.358797
0.751311
152
2002
0.666167
0.532662
1.221710
0.953759
0.740703
0.891644
0.864803
0.650864
0.978594
...
0.754683
0.777798
0.934998
1.003888
0.500700
0.631289
0.732274
1.178224
1.491897
0.668747
153
2003
0.626739
0.510944
1.197773
1.031114
0.749967
0.587526
0.953749
0.644137
1.081003
...
0.728919
0.764798
1.090543
0.995715
0.579009
0.742025
0.909483
1.109451
1.437342
0.619138
154
2004
0.808530
0.599808
1.230719
1.145787
0.726731
0.559408
0.992667
0.705155
1.085585
...
0.811628
0.832544
1.154425
1.058670
0.577782
0.820352
0.960683
1.145524
1.449669
0.805729
155
2005
0.708767
0.662562
1.240437
1.363114
0.760994
0.711417
1.042403
0.754755
1.192094
...
0.926774
0.785435
1.089552
1.026997
0.612627
0.806216
0.920411
1.167342
1.570442
0.704956
156
2006
0.710067
0.682008
1.260810
1.270278
0.810531
0.703944
0.979003
0.717592
1.243876
...
0.949137
0.758671
1.141125
1.017961
0.515754
0.799962
0.807138
1.133878
1.470506
0.715356
157
2007
0.802921
0.668344
1.397292
1.228914
0.809931
0.807953
0.857576
0.697037
1.193876
...
0.979755
0.801844
1.183934
1.122697
0.495954
0.667598
0.730883
1.292169
1.454878
0.787556
158
2008
0.779458
0.897198
1.360455
1.201087
0.809522
0.595235
1.125758
0.731292
1.154022
...
1.173755
0.904335
1.138043
1.178743
0.566727
0.710552
0.738592
1.386951
1.444160
0.811811
159
2009
0.859494
0.912635
1.264546
1.311241
0.786712
0.734526
1.017222
0.773792
1.191785
...
1.072001
0.923289
1.165771
1.177525
0.608436
0.673398
0.793120
1.346778
1.423142
0.778175
160
2010
0.947421
0.820380
1.277419
1.263623
0.813658
0.987399
0.953885
0.806364
1.271458
...
1.125428
0.821953
1.177125
1.139179
0.580254
0.748071
0.790211
1.259142
1.272524
0.757993
161 rows × 33 columns
Question 0 How many simulations are there per model?
Answer 0:
In [4]:
# Temperature response by Natural forcings
df_nat = pd.read_pickle('tas_ann_cmip5_historicalNat.pkl')
In [5]:
df_nat
Out[5]:
Year
BNU-ESM
CCSM4
CESM1-CAM5-1-FV2
CNRM-CM5
CSIRO-Mk3-6-0
CanESM2
FGOALS-g2
GFDL-CM3
GFDL-ESM2M
GISS-E2-H
GISS-E2-R
HadGEM2-ES
IPSL-CM5A-LR
IPSL-CM5A-MR
MIROC-ESM
MIROC-ESM-CHEM
MRI-CGCM3
NorESM1-M
bcc-csm1-1
0
1850
-0.043956
0.047525
-0.128310
-0.097586
-0.073213
0.010673
0.070986
NaN
NaN
-0.017733
0.041652
NaN
0.012394
-0.033670
-0.018308
0.072031
-0.066430
-0.055138
-0.048620
1
1851
0.123698
0.002952
-0.085701
-0.068122
0.040596
0.146064
0.067041
NaN
NaN
-0.040952
0.073852
NaN
0.011312
-0.034343
0.013601
0.188085
-0.004275
0.127198
-0.010520
2
1852
-0.001129
-0.020802
0.088462
-0.013068
0.011132
0.132392
0.033477
NaN
NaN
-0.144006
0.154952
NaN
-0.027552
-0.057679
-0.034236
0.214831
0.008597
0.166089
0.021989
3
1853
-0.096529
-0.026948
0.204062
-0.063004
-0.036149
0.066073
0.049559
NaN
NaN
-0.086624
0.023652
NaN
-0.024024
-0.037552
0.027537
0.039512
-0.072130
-0.020029
0.087171
4
1854
-0.132502
-0.118921
-0.032283
-0.117977
-0.107613
0.103637
0.050432
NaN
NaN
-0.041824
0.067688
NaN
-0.011897
-0.071088
0.016692
0.047876
-0.019294
0.002035
0.132608
5
1855
-0.080629
-0.065212
-0.120410
-0.079386
-0.025240
0.038546
-0.022932
NaN
NaN
0.011258
0.092979
NaN
-0.040906
-0.023615
0.157728
0.026185
-0.111403
0.135971
-0.082947
6
1856
0.032498
-0.051421
-0.021528
-0.068950
-0.046795
-0.036408
0.003068
NaN
NaN
-0.078806
0.056915
NaN
-0.059424
-0.089334
-0.038790
0.081949
-0.067775
-0.068665
-0.062520
7
1857
0.000244
-0.086939
-0.080728
-0.074322
-0.171968
-0.049090
0.017232
NaN
NaN
-0.186842
-0.044185
NaN
-0.049442
-0.160579
-0.117408
-0.031360
0.051652
-0.022702
-0.091302
8
1858
-0.143938
-0.043612
-0.060647
-0.048586
-0.123604
-0.129618
-0.024759
NaN
NaN
-0.198888
-0.019458
NaN
-0.194842
-0.117679
-0.169154
0.003440
-0.083575
0.127644
-0.113774
9
1859
0.028580
0.032270
-0.117065
-0.016586
-0.082577
-0.117827
-0.026205
NaN
NaN
-0.045324
-0.029376
NaN
-0.170424
-0.105779
-0.144663
-0.126188
-0.064248
0.120353
-0.046611
10
1860
0.181035
0.017807
0.036426
-0.011941
-0.104549
0.015992
0.004805
0.178287
NaN
-0.045297
-0.053548
0.063500
-0.151142
-0.125925
-0.112108
-0.118133
-0.029885
0.153207
0.013453
11
1861
0.068862
-0.071630
0.077562
0.047032
-0.076595
-0.004172
0.048777
0.101941
0.094040
-0.029688
0.013679
0.129891
-0.055242
-0.061615
-0.077363
-0.110578
-0.051630
-0.030211
-0.026765
12
1862
-0.049683
-0.050239
-0.016801
0.030659
-0.063077
-0.080090
0.017414
0.104050
-0.070205
0.125348
-0.043585
0.129763
-0.040342
-0.010725
-0.132172
-0.156497
0.039834
0.016498
0.068408
13
1863
0.151289
0.051279
0.083090
-0.037622
-0.044940
-0.112899
0.008277
0.084223
0.097331
-0.032415
0.005288
0.167418
-0.098197
0.014457
-0.073554
-0.052715
0.052106
-0.075411
-0.079802
14
1864
0.105053
0.067607
0.144608
0.034959
-0.022268
-0.055227
-0.021832
-0.028895
0.170913
-0.012779
0.034815
0.086563
-0.008861
0.024694
0.031901
-0.098124
-0.004948
-0.138284
-0.038356
15
1865
-0.121538
-0.038639
0.131872
0.068123
0.013060
-0.012345
-0.065486
0.160014
0.139976
0.026539
0.015197
0.017382
0.009248
0.010875
0.051773
-0.021515
0.023143
-0.145556
-0.029356
16
1866
0.083426
-0.051839
-0.033919
0.004823
0.059969
-0.077272
-0.061623
0.178650
0.000395
0.152585
0.046133
-0.012473
0.047458
0.049303
0.051382
-0.096024
0.047297
-0.192756
0.012544
17
1867
-0.033774
0.067579
-0.014574
0.005868
-0.004295
-0.058763
-0.031341
0.066987
-0.055415
0.082712
-0.089212
0.040027
0.019430
0.071475
0.024773
-0.110733
-0.003266
-0.089211
-0.062211
18
1868
-0.364674
-0.001848
0.168099
0.014378
0.007442
0.054155
-0.019723
0.121932
-0.115605
0.071876
0.062315
0.043782
0.020148
0.005612
-0.034981
0.047403
-0.028012
0.019435
0.004626
19
1869
-0.111347
-0.027584
0.115644
0.017723
0.063742
-0.006308
0.007886
0.060568
0.134222
0.085303
0.075461
0.070754
0.033630
-0.002815
0.031473
0.012794
0.008770
-0.110629
0.006380
20
1870
0.128008
0.000234
-0.065101
0.062132
0.067851
0.046619
-0.036250
0.119759
0.172995
0.064703
0.039942
0.132200
0.123467
0.111530
0.085855
0.066676
0.113479
-0.040020
0.095835
21
1871
-0.128311
0.013598
-0.069192
0.059050
0.073978
0.029237
-0.057395
0.165623
0.043776
0.084867
-0.099176
0.161445
0.106848
0.076948
0.139792
0.118603
-0.007885
0.043416
-0.020183
22
1872
0.043380
-0.053693
0.034435
0.064232
0.103614
0.103792
-0.071050
0.110505
-0.104015
0.033848
-0.054094
0.142582
0.151303
0.081039
0.174101
0.028349
0.000488
0.152998
0.037508
23
1873
0.015553
0.028261
0.046126
0.014959
0.160614
0.074773
-0.020323
0.050778
0.233631
0.015094
0.015942
0.159791
0.058021
0.045348
0.175073
0.122940
0.141761
0.256462
0.082171
24
1874
-0.035029
0.059052
-0.041710
0.016268
0.105578
0.001964
-0.051177
0.142350
0.318831
0.024148
0.007442
0.107636
0.045530
0.105594
0.065282
0.081122
0.123915
-0.024556
-0.008347
25
1875
0.023008
0.046561
0.087053
0.072123
0.057523
0.004155
0.019105
0.113805
0.000531
0.056076
-0.034130
0.084282
0.029858
0.090912
-0.021808
-0.003942
0.129088
-0.092593
-0.018811
26
1876
0.006244
0.055943
0.124990
0.026159
0.038760
-0.019472
0.051232
-0.069086
0.076385
0.055121
-0.097258
-0.033173
0.082948
0.044366
-0.072718
-0.038906
0.115797
-0.163629
0.131162
27
1877
0.380953
0.094625
-0.111556
0.068441
0.064723
-0.092045
0.055123
0.038650
0.068831
0.041894
-0.122812
-0.027146
0.111812
0.095712
-0.034454
0.036231
-0.082812
0.023935
0.035889
28
1878
0.094326
0.083425
-0.158138
0.069096
0.053678
0.001046
0.000332
0.062596
0.037722
0.013067
-0.066112
0.003400
0.054967
0.055275
-0.019281
-0.059597
-0.146103
-0.083247
0.076271
29
1879
-0.123120
0.040607
-0.184765
0.021123
0.060623
0.022419
0.005350
0.077696
0.137213
0.016739
-0.074958
0.018463
0.013921
0.049257
0.054037
-0.163715
-0.012257
0.007398
-0.065892
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
131
1981
-0.042529
0.015116
0.010853
0.051796
0.046551
0.014855
0.047968
0.195359
0.007713
0.063230
-0.027512
0.115418
0.063539
-0.063215
0.061992
0.200312
0.009334
0.055316
0.065726
132
1982
-0.000074
-0.130757
-0.103819
-0.114786
0.031287
-0.146199
0.023595
-0.016395
0.031085
0.026039
-0.214748
0.062591
-0.079906
-0.146706
-0.059081
0.160812
-0.080530
-0.054947
-0.169938
133
1983
-0.284092
-0.348457
-0.149965
-0.273713
-0.187613
-0.161772
-0.046141
-0.308295
-0.119742
-0.193624
-0.296312
-0.096509
-0.128570
-0.113697
-0.113181
0.024758
-0.044957
-0.083047
-0.242665
134
1984
-0.063692
-0.276521
-0.083965
-0.176213
-0.022640
-0.200654
-0.079895
-0.173141
-0.241560
-0.130042
-0.223985
-0.036155
-0.081697
-0.046425
-0.052327
0.030922
0.105206
-0.097075
-0.140702
135
1985
-0.121720
-0.173039
-0.068101
-0.119913
0.041551
-0.131345
-0.065150
-0.105641
-0.190178
-0.009224
-0.239612
0.022272
-0.002915
-0.051697
0.021001
-0.036851
0.077370
-0.024738
-0.054902
136
1986
0.073426
-0.185821
0.012481
-0.116168
-0.076740
-0.078872
-0.007268
0.021432
-0.202496
0.018176
-0.170921
0.019082
-0.079097
-0.093706
0.029192
-0.133688
0.029534
0.035189
-0.016465
137
1987
0.116171
-0.146348
0.045062
-0.055577
-0.051377
-0.116518
0.017477
0.074314
-0.201605
0.017276
-0.108276
0.023163
-0.056952
-0.021315
0.080973
-0.071924
0.066834
0.140362
-0.121774
138
1988
0.018326
-0.104866
-0.126028
-0.021486
0.018287
-0.071718
-0.035750
0.112641
-0.113342
0.058921
0.049206
0.047227
0.010558
0.006185
0.138619
-0.105478
0.009697
0.116653
0.018308
139
1989
0.310453
-0.031912
-0.073465
0.025496
0.027651
-0.091181
-0.090786
0.116605
0.024295
0.011885
0.035442
0.106782
0.116021
-0.059652
0.227637
-0.031788
-0.021321
0.059307
-0.054783
140
1990
0.138017
-0.010357
0.018762
-0.025750
0.053478
-0.106936
-0.122341
0.038841
-0.030705
0.024121
0.028633
0.076372
0.117330
0.025630
0.194082
0.014203
-0.071030
-0.046575
0.016062
141
1991
-0.259856
-0.162130
-0.159674
-0.163941
-0.015531
-0.116136
-0.007405
0.038878
-0.089215
-0.024924
-0.080394
0.038245
-0.042597
-0.092088
0.105419
-0.110678
-0.135221
-0.040556
-0.065547
142
1992
-0.550383
-0.475212
-0.381665
-0.440941
-0.317540
-0.419581
-0.021359
-0.367459
-0.329615
-0.359770
-0.365939
-0.204228
-0.247615
-0.263088
-0.178027
-0.380078
-0.332203
-0.219711
-0.450292
143
1993
-0.138338
-0.338521
-0.262310
-0.371922
-0.247686
-0.363354
-0.020332
-0.427604
-0.275369
-0.240861
-0.386203
-0.133446
-0.227152
-0.335479
-0.135645
-0.241315
-0.167139
-0.309211
-0.372483
144
1994
0.090489
-0.225775
-0.165138
-0.227886
-0.080713
-0.396590
-0.016577
-0.176568
-0.320733
-0.178733
-0.166430
-0.082682
-0.157670
-0.258915
-0.019872
-0.163033
-0.283885
-0.081129
-0.198838
145
1995
-0.170838
-0.209712
-0.209901
-0.195032
-0.022986
-0.291963
-0.049395
-0.002404
-0.165042
-0.107170
-0.043194
-0.078946
-0.095270
-0.001679
-0.064099
-0.034042
-0.183357
0.108380
-0.163620
146
1996
0.053753
-0.186639
-0.084174
-0.133241
0.000442
-0.159818
-0.015286
-0.009377
-0.170133
-0.108733
0.009961
-0.090937
0.001121
-0.076515
0.042982
-0.046569
-0.206830
-0.028538
-0.102374
147
1997
0.076535
-0.108221
0.028844
-0.170686
0.056514
-0.160536
-0.005941
0.023823
-0.078251
-0.043124
0.078542
-0.044528
0.027739
-0.025643
0.117228
-0.026542
-0.006912
0.112271
-0.082165
148
1998
0.005135
-0.086284
0.133444
-0.104232
0.107787
-0.239527
-0.048695
0.041396
-0.190996
-0.003070
-0.077994
-0.080328
0.030030
0.017648
0.202810
0.009712
0.113988
0.220716
-0.080120
149
1999
-0.036392
-0.069348
-0.036710
-0.105822
0.145387
-0.110727
-0.006405
0.097514
-0.055615
0.022267
0.063488
-0.079437
0.044403
0.001330
0.139355
-0.002651
-0.020775
0.111135
-0.003383
150
2000
0.008562
-0.063993
-0.132356
-0.087077
0.115787
-0.061890
0.058677
0.160278
0.105276
0.065658
0.033261
0.034472
-0.002179
0.098085
0.185419
0.195758
-0.040830
0.039253
0.076426
151
2001
-0.032120
-0.054812
-0.111938
-0.063341
0.146042
-0.004572
0.048286
0.246759
-0.043778
0.021903
-0.030458
0.151472
0.155294
0.069421
0.157701
0.350531
-0.004021
-0.000047
0.031162
152
2002
-0.124383
-0.029639
-0.087256
-0.054604
0.215296
-0.009490
-0.044595
0.170696
-0.087705
-0.019115
-0.020594
0.108845
0.205003
0.186175
0.109437
0.185676
0.147706
0.125080
0.039144
153
2003
0.143853
-0.054157
-0.026474
-0.008704
0.173942
0.004464
-0.046905
0.229223
0.066049
0.005967
0.065697
0.180372
0.122394
0.147821
0.155464
0.150394
0.156225
-0.011711
0.059698
154
2004
0.139308
-0.025402
0.064572
0.004259
0.123114
-0.124636
-0.059059
0.205341
0.253495
0.031130
0.135542
0.119554
0.108839
0.068239
0.167292
0.258785
0.136606
-0.067975
0.099989
155
2005
0.067462
0.045598
-0.063183
0.009768
0.142423
-0.131918
-0.000323
0.190414
0.210295
0.149248
0.179315
0.079918
0.162276
0.060885
0.162519
0.221985
0.015734
-0.047829
0.149726
156
2006
NaN
NaN
NaN
0.070587
0.191487
-0.060145
-0.052395
NaN
NaN
0.080585
0.179388
0.135654
0.195439
0.059239
NaN
NaN
NaN
-0.180175
0.037508
157
2007
NaN
NaN
NaN
-0.036068
0.175905
0.024692
-0.071268
NaN
NaN
0.007976
0.178588
0.139336
0.160967
-0.056261
NaN
NaN
NaN
-0.028029
0.088398
158
2008
NaN
NaN
NaN
-0.007595
0.119642
0.019637
-0.033114
NaN
NaN
0.120521
0.113833
0.134854
0.063585
-0.092825
NaN
NaN
NaN
0.069644
0.054289
159
2009
NaN
NaN
NaN
0.033950
0.115578
-0.011299
-0.048823
NaN
NaN
0.015058
0.022897
0.156582
0.057976
-0.005297
NaN
NaN
NaN
0.037089
0.034280
160
2010
NaN
NaN
NaN
0.010941
0.113642
0.001355
NaN
NaN
NaN
0.051694
0.130970
0.123109
0.059958
0.047421
NaN
NaN
NaN
0.058771
0.098808
161 rows × 20 columns
Now let's load instrumentally observed temperature datasets to compare with the models
In [6]:
# observations
# HadCRUT4 global surface temperature
df_Had = pd.read_csv('HadCRUT.4.6.0.0.annual_ns_avg.txt',delim_whitespace=True,header=None)
# GISTEMP global surface temperature
df_GIST = pd.read_csv('GLB.Ts+dSST.csv',delimiter=',',skiprows=1, na_values='***')
Let's plot both sets of simulations, as well as the observations
In [7]:
plt.style.use('ggplot')
# All forcings
# median of models
line1,=plt.plot(df_all['Year'],df_all.iloc[:,1:].median(axis=1),linewidth=3,color='C0',label='All forcings')
# time series of each model with thin lines
for i in np.arange(df_all.shape[1]-1):
plt.plot(df_all['Year'],df_all.iloc[:,i+1],linewidth=0.5,color='C0',alpha=0.5)
# Natural forcings
# median of models
line2,=plt.plot(df_nat['Year'],df_nat.iloc[:,1:].median(axis=1),linewidth=3,color='C1',label='Natural forcings only')
# time series of each model with thin lines
for i in np.arange(df_nat.shape[1]-1):
plt.plot(df_nat['Year'],df_nat.iloc[:,i+1],linewidth=0.5,color='C1',alpha=0.5)
# observations, with black lines
df_Had_ano = df_Had[1]-df_Had[1][0:30].mean()
#line3,=plt.plot(df_Had[0][0:161],df_Had_ano[0:161],label='observations',linewidth=1,color='black')
df_GIST_ano = df_GIST['J-D']-df_GIST['J-D'][0:30].mean()
line4,=plt.plot(df_GIST['Year'][0:131],df_GIST_ano[0:131],label='GISTEMP',linewidth=1,color='black')
plt.legend(handles=[line1,line2,line4],loc="upper left")
plt.xlabel('Year')
plt.ylabel('Temperature anomaly (K)')
Out[7]:
Text(0,0.5,'Temperature anomaly (K)')
The range spanned by the wiggly lines gives a measure of ther interal variability of the models. That is. for a given forcing in a given year, these lines are meant to protray the range of possible climate states. To simplify the display, we can also show this as 90% central quantiles (i.e. spanning 5% to 95% of the data).
In [8]:
# All forcings
plt.plot(df_all['Year'],df_all.iloc[:,1:].median(axis=1),linewidth=3,color='C0',label='All forcings')
plt.fill_between(df_all['Year'],df_all.iloc[:,1:].quantile(0.05,axis=1),df_all.iloc[:,1:].quantile(0.95,axis=1),label='All forcing 90% CI',alpha=0.3)
# Natural forcings
plt.plot(df_nat['Year'],df_nat.iloc[:,1:].median(axis=1),linewidth=3,color='C1',label='Natural forcings only')
plt.fill_between(df_nat['Year'],df_nat.iloc[:,1:].quantile(0.05,axis=1),df_nat.iloc[:,1:].quantile(0.95,axis=1),label='Natural forcing 90% CI',alpha=0.3)
# observations
#line3,=plt.plot(df_Had[0][0:161],df_Had_ano[0:161],label='HadCRUT4',linewidth=1,color='black')
line4,=plt.plot(df_GIST['Year'][0:131],df_GIST_ano[0:131],label='GISTEMP',linewidth=1,color='black')
plt.legend(loc='upper left')
plt.xlabel('Year')
plt.ylabel('Temperature anomaly')
Out[8]:
Text(0,0.5,'Temperature anomaly')
Question 1: Which experiment is more consistent with observations? Based on this, will you attribute the climate change to natural forcings or anthropogenic forcings?
Answer 1:
Question 2: When answering Question 1, what's your standard of "consistent" when comparing curves?
Answer 2:
Question 3: The decrease of temperature in the early 1990s corresponds to a very large volcanic eruption event. What mechanism do you think can explain that the volcanic eruption causes global temperature decrease?
Answer 3:
An important question is: "When did man-made climate change emerged from the background of natural variability, both internally-genrerated (e.g. El Niño) and externally-forced?". Let us compare the probability distribution of temperature anomalies in these two experiments year by year and try to find when the probability distributions of these cease to overlap.
First let's calculate the Kernel Density Function of temperature anomaly in each year.
In [9]:
# Kernel Density Function
kde_all = {}
kde_nat = {}
In [10]:
for i in np.arange(1850,2011):
kde_all[i] = {}
ax=df_all.iloc[i-1850,1:].plot.kde()
kde_all[i]['x']=ax.get_children()[i-1850]._x
kde_all[i]['y']=ax.get_children()[i-1850]._y
In [11]:
for i in np.arange(1850,2011):
kde_nat[i] = {}
ax=df_nat.iloc[i-1850,1:].plot.kde()
kde_nat[i]['x']=ax.get_children()[i-1850]._x
kde_nat[i]['y']=ax.get_children()[i-1850]._y
In [12]:
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
from IPython.display import display
In [13]:
def pltkde(year):
plt.plot(kde_all[year]['x'],kde_all[year]['y'],label='All forcings')
plt.plot(kde_nat[year]['x'],kde_nat[year]['y'],label='Natural forcings')
plt.xlabel('Temperature anomaly')
plt.ylabel('Probability')
plt.legend()
Please run these commands in your teminal if the slider doesn't show:
pip install ipywidgets
jupyter nbextension enable --py --sys-prefix widgetsnbextension
In [14]:
interact(pltkde, year=(1850, 2010, 1))
Out[14]:
<function __main__.pltkde>
Question 4: Please change the year in the slider, when do you think temperature response in the "all forcings" experiment seperates from that in the "natural forcings" experiment?
Answer 4:
Each category (natural or anthropogenic) includes several kinds, such as greenhouse gases, anthropogenic aerosols, solar irradiance, and volcanic activity. By using climate models, we can seperate the contribution of each forcing to climate change. Here we will analyze the model output from the GISS model [Marvel et al. (2016)] to see the contribution of different forcings.
Let's read the response of ocean heat content by different forcings. In Marvel et al. (2016), to consider the internal variability in the model, multiple runs are done that differ only slightly in their starting point for each forcing experiment. They are indexed R1, R2, etc
In [15]:
ohc = pd.read_csv('ohc.Marvel_etal2015.csv')
In [16]:
ohc
Out[16]:
Year
All forcings Ensemble Mean
All forcings R1
All forcings R2
All forcings R3
All forcings R4
All forcings R5
All forcings R6
Anthropogenic tropospheric aerosol Ensemble Mean
Anthropogenic tropospheric aerosol R1
...
Solar R2
Solar R3
Solar R4
Solar R5
Volcanic Ensemble Mean
Volcanic R1
Volcanic R2
Volcanic R3
Volcanic R4
Volcanic R5
0
1850
0.595979
1.033132
0.948472
1.245966
0.086574
-0.684885
0.946614
0.381123
0.919550
...
0.996126
1.474749
-0.012580
-0.661525
0.559404
1.169655
1.057983
1.316933
0.124255
-0.871806
1
1851
0.724605
0.917449
1.092046
1.209630
0.290928
-0.256098
1.093674
0.311976
0.617146
...
1.107255
1.576754
-0.101009
-0.425750
0.813444
1.159514
1.412848
1.754281
0.704800
-0.964224
2
1852
0.850923
0.947071
1.149636
1.213727
0.713551
-0.244096
1.325649
0.019951
0.271089
...
1.099878
1.209883
0.264963
-0.717634
0.912322
0.782424
1.833514
1.926378
1.028545
-1.009254
3
1853
1.119904
0.942387
1.913577
1.632057
0.924815
-0.212759
1.519346
0.027390
0.160585
...
1.283580
1.402812
0.630441
-1.047488
0.964464
0.371606
1.978686
2.049416
0.934913
-0.512298
4
1854
1.346502
0.920624
2.134961
1.673247
1.407607
-0.043562
1.986132
0.017271
0.310807
...
1.013352
1.017732
1.009690
-1.274217
1.132118
0.676498
1.723336
2.481678
1.012228
-0.233151
5
1855
1.465347
0.823582
2.495141
1.525199
1.930659
0.041043
1.976459
-0.001526
0.163738
...
0.944504
0.756415
1.192716
-1.450653
1.371950
1.312346
1.782448
2.683812
1.055901
0.025245
6
1856
1.265596
0.377425
2.228259
1.032064
1.700005
0.463278
1.792546
-0.036811
0.001997
...
1.130221
0.898011
1.126720
-1.212441
1.158298
0.663147
1.471572
2.186917
1.196114
0.273740
7
1857
0.362296
-0.566428
1.282317
0.297041
0.920902
-0.542125
0.782066
-0.058569
-0.325708
...
1.334244
0.944272
1.160046
-1.199410
0.166017
-0.610994
0.321966
1.209844
0.489525
-0.580258
8
1858
-0.105018
-0.999640
0.425850
-0.058483
0.764912
-1.245711
0.482964
-0.175956
-0.661579
...
1.324945
0.978124
1.526568
-0.918760
-0.478180
-1.380014
-0.400531
0.505067
0.003525
-1.118946
9
1859
-0.053146
-0.956471
0.634904
-0.557407
1.276617
-1.241151
0.524632
-0.284213
-0.501958
...
1.227867
0.941425
1.732684
-0.923391
-0.528851
-1.617496
-0.115960
0.327730
-0.147876
-1.090655
10
1860
0.141585
-0.946441
0.787993
-0.499757
2.005290
-1.053962
0.556385
-0.325133
-0.533232
...
1.708275
1.082552
1.509381
-0.786448
-0.112082
-1.651250
0.391689
1.159968
0.217755
-0.678572
11
1861
0.391921
-0.811248
1.155393
-0.484708
2.571745
-1.059474
0.979818
-0.266775
-0.605742
...
1.670353
1.088934
1.182457
-0.771389
0.103021
-1.489138
0.592019
1.593542
0.390649
-0.571967
12
1862
0.553104
-0.775634
1.427801
-0.295855
2.605149
-0.765592
1.122753
-0.476817
-0.915277
...
1.288716
1.099146
1.349090
-0.675013
0.089079
-1.366128
0.461785
1.530667
0.449954
-0.630881
13
1863
0.561382
-0.671725
1.936445
-0.411463
2.471488
-0.844464
0.888010
-0.373885
-1.245246
...
1.496739
0.615963
1.794503
-0.673819
0.110133
-1.593183
0.442962
1.403419
0.422100
-0.124633
14
1864
0.724719
-0.430921
2.023642
-0.183254
2.626855
-0.534955
0.846947
-0.275810
-1.297657
...
1.348047
0.653546
1.816785
-0.663820
0.215499
-1.420261
0.647812
1.046389
0.830930
-0.027375
15
1865
0.814712
-0.394426
1.902706
-0.489677
3.133868
-0.490213
1.226015
-0.249729
-1.291022
...
1.054765
0.886704
1.735827
-0.169210
0.283796
-1.017908
0.671309
1.231931
0.650014
-0.116367
16
1866
0.829339
-0.406315
1.858805
-0.599059
3.072637
-0.370426
1.420391
-0.195399
-1.197483
...
0.625018
0.285741
2.051151
-0.084702
0.454349
-0.895235
0.964511
1.470798
0.771661
-0.039990
17
1867
1.001222
-0.550805
1.992021
-0.240487
3.406705
-0.416313
1.816211
-0.209676
-1.346339
...
0.388247
0.094156
2.422207
-0.318445
0.625804
-0.862513
1.409958
1.678110
0.800965
0.102500
18
1868
1.132920
0.033235
2.169260
-0.504920
3.771220
-0.538662
1.867384
-0.302574
-1.741708
...
0.253881
0.297680
2.560905
-0.194315
0.792745
-0.661221
1.590155
1.957882
0.827167
0.249741
19
1869
1.288302
0.263953
2.453737
-0.259396
4.263649
-0.536134
1.544004
-0.308065
-1.599937
...
0.014795
0.251333
2.407329
0.008736
0.931556
-0.407664
1.678323
2.229851
0.588065
0.569207
20
1870
1.363521
0.268165
2.469499
-0.107213
4.270315
-0.431483
1.711841
-0.262720
-1.610305
...
0.336713
0.004493
2.439963
0.014762
1.046807
0.017604
1.570441
2.258974
0.492289
0.894728
21
1871
1.655477
0.221160
3.163789
0.001230
4.493101
-0.234073
2.287654
-0.332093
-1.958486
...
0.295236
0.097304
2.457485
0.172349
1.243579
0.015094
1.991560
2.105400
0.911350
1.194491
22
1872
2.065206
0.726086
3.692354
0.668760
4.919018
-0.473839
2.858856
-0.283597
-2.001845
...
0.283862
-0.089640
2.192715
0.448532
1.391549
-0.182974
2.461607
2.141116
1.039346
1.498649
23
1873
2.154275
0.781015
3.934220
0.877826
4.667494
-0.317732
2.982824
-0.384275
-2.151266
...
0.058452
-0.075455
2.179602
0.524929
1.456086
-0.358908
2.639857
2.578741
0.716496
1.704245
24
1874
2.408178
0.914479
4.149438
1.302173
5.079289
0.131112
2.872575
-0.512325
-2.040668
...
0.328201
-0.508915
1.912076
1.055435
1.658381
-0.733101
2.730707
2.941955
0.696812
2.655532
25
1875
2.628405
0.842270
4.679478
1.490480
5.387366
0.633881
2.736953
-0.514830
-2.231236
...
0.377865
-0.835206
1.542017
1.191327
1.808347
-0.353467
2.774721
3.091218
0.247315
3.281946
26
1876
2.827188
1.247794
4.928034
1.705900
5.090939
0.959442
3.031020
-0.419968
-2.268077
...
-0.030286
-1.037058
1.472916
1.521948
1.865737
0.016211
3.023546
2.989433
-0.015023
3.314519
27
1877
2.967591
1.494406
5.129058
1.562753
5.314494
1.206666
3.098166
-0.528715
-2.450163
...
-0.316344
-1.092911
1.197427
1.419764
1.886487
0.076216
3.168346
2.975806
-0.434202
3.646269
28
1878
3.037198
1.339996
5.383632
1.718256
5.470967
1.232833
3.077502
-0.473152
-2.584200
...
-0.105619
-1.110589
1.171628
1.929357
2.035484
0.137116
3.693231
2.912095
-0.623945
4.058920
29
1879
3.323603
1.624920
5.253866
1.967221
5.886041
1.548608
3.660962
-0.469376
-2.944271
...
-0.114171
-1.108898
1.152465
2.246123
2.392789
0.635391
3.937061
3.264438
-0.258933
4.385990
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
126
1976
33.841553
29.173316
36.586296
36.681772
35.209734
37.022605
28.375592
-18.509766
-21.383579
...
0.463326
-3.639937
-0.223262
-1.804152
3.984429
3.585196
7.912046
3.628491
3.094885
1.701529
127
1977
34.574762
29.908651
37.293459
37.794785
35.676020
37.724773
29.050882
-19.097589
-21.887622
...
-0.266077
-3.979504
-0.223781
-1.566390
4.007641
3.829751
7.881792
3.505407
2.838982
1.982276
128
1978
35.475441
31.009521
38.170295
38.864643
36.381318
38.315026
30.111843
-19.711671
-22.829472
...
-0.389686
-3.949829
-0.091432
-1.824567
4.174624
3.913621
7.812665
4.006445
3.044135
2.096253
129
1979
36.271494
31.902438
39.381891
39.236149
37.111759
39.004171
30.992557
-20.369803
-23.760352
...
-0.587661
-3.999338
0.190972
-1.804901
4.081951
3.385056
8.032755
4.271212
2.875073
1.845660
130
1980
37.308667
32.867362
40.364006
40.355764
38.248517
39.951730
32.064622
-20.957427
-24.252611
...
-0.397159
-3.722264
0.182641
-1.416857
4.178108
3.172283
7.853636
4.829951
3.110399
1.924269
131
1981
38.342857
33.952459
41.297695
41.491017
39.508841
40.632246
33.174887
-21.282915
-24.202918
...
-0.772952
-3.548315
-0.068433
-1.235954
4.473148
3.652870
8.516607
4.979138
2.975399
2.241726
132
1982
38.990557
34.474482
42.152700
42.208775
40.216758
41.333427
33.557202
-21.740359
-24.804290
...
-1.047477
-3.444599
0.395464
-1.003952
4.200222
3.171120
8.372292
4.838957
2.529003
2.089738
133
1983
38.431350
33.803174
41.374715
41.831077
39.878889
40.822832
32.877413
-22.461504
-25.671766
...
-1.054996
-3.779614
0.687536
-1.173051
2.897854
1.751315
7.217683
3.360811
1.326237
0.833225
134
1984
38.862928
34.426901
41.956509
42.119160
40.310020
40.847702
33.517274
-23.140453
-26.244523
...
-1.030278
-4.089847
0.724148
-0.990232
2.403300
1.092898
6.949260
3.045073
0.515799
0.413468
135
1985
39.846297
35.425643
43.119339
42.895712
41.495934
41.630582
34.510571
-23.711101
-26.613202
...
-0.899762
-4.052640
0.266098
-0.671515
2.454898
0.936513
6.784779
3.309764
0.623352
0.620082
136
1986
40.814501
36.367044
43.929037
43.964290
42.660358
42.593369
35.372908
-24.348693
-27.068301
...
-1.091571
-4.029056
0.480034
-0.739063
2.568752
1.091411
6.918867
3.662456
0.324002
0.847026
137
1987
41.713453
37.335286
44.999169
44.835086
43.405317
43.689305
36.016554
-25.016356
-27.465912
...
-1.063947
-4.169568
0.335822
-0.930320
2.834639
1.379751
7.239711
4.062609
0.505025
0.986100
138
1988
42.613162
38.237733
46.061265
45.888114
43.980680
44.351753
37.159429
-25.753480
-28.212058
...
-1.315556
-3.675372
0.271529
-1.130307
2.801062
1.296993
7.186090
3.901121
0.567943
1.053166
139
1989
44.013984
39.502013
47.619583
47.407567
45.390972
45.740617
38.423154
-26.491215
-29.073343
...
-1.015355
-3.482662
0.219371
-1.194204
2.951420
1.519677
7.549320
3.981549
0.668676
1.037878
140
1990
45.142816
40.205053
48.674911
48.649309
46.436335
47.085969
39.805316
-27.450982
-30.094326
...
-0.774662
-3.110601
0.311073
-1.386043
2.974462
1.651054
7.633376
4.292774
0.235372
1.059732
141
1991
45.937118
41.121417
49.644056
49.566577
47.089135
47.478253
40.723267
-28.272119
-30.435812
...
-0.401043
-2.797485
0.659956
-1.464909
2.669275
1.376177
7.059336
4.176778
-0.248546
0.982632
142
1992
44.852366
40.520443
49.002710
48.150099
45.465259
46.213350
39.762334
-29.026027
-31.108523
...
-0.660479
-2.422381
0.825514
-1.082282
0.617449
-0.414561
5.055588
2.146524
-2.511578
-1.188725
143
1993
44.847455
40.451610
48.883294
48.420651
45.119743
45.847694
40.361738
-29.801813
-31.702964
...
-0.610450
-2.630887
0.920776
-1.266106
-0.439873
-1.535252
4.024444
1.075193
-3.704523
-2.059229
144
1994
45.989332
41.766259
49.914304
49.615651
46.269935
46.663878
41.705964
-30.452287
-32.070424
...
-0.784194
-2.946875
0.741433
-1.077784
-0.323952
-1.743465
4.161938
1.160311
-3.590069
-1.608473
145
1995
47.098108
42.886606
51.048676
50.723090
47.109604
47.765356
43.055314
-31.260093
-33.009192
...
-1.108774
-2.984650
0.952437
-0.584365
0.025227
-1.242215
4.708399
1.297451
-3.130096
-1.507402
146
1996
48.319306
44.196080
52.296175
51.819321
48.262340
48.839920
44.502002
-32.001633
-33.680326
...
-0.927239
-3.099619
0.948674
-1.060571
0.231445
-0.921329
4.923418
1.334288
-3.031554
-1.147596
147
1997
49.798270
46.226142
53.538800
53.362991
49.912142
50.160435
45.589110
-32.643873
-34.605678
...
-1.208794
-3.351336
1.092950
-1.018753
0.459012
-1.135275
4.992528
1.789482
-2.898569
-0.453104
148
1998
51.060756
47.788436
54.628491
54.307652
51.426787
51.101909
47.111262
-33.437269
-35.105833
...
-1.676849
-3.006865
0.904789
-0.804452
0.680377
-1.084158
5.435114
2.220755
-2.979758
-0.190071
149
1999
52.365222
49.013508
55.815352
55.583371
52.594615
52.370158
48.814327
-34.309374
-35.652971
...
-1.776228
-2.565577
0.745220
-1.014283
0.911828
-0.491488
5.315827
2.548642
-3.122183
0.308343
150
2000
53.664892
50.486800
56.432424
57.084052
53.996509
53.890272
50.099297
-35.098555
-36.254356
...
-1.536444
-2.653559
0.536502
-1.210960
1.058697
-0.467851
5.398064
2.879244
-2.916352
0.400378
151
2001
55.041435
52.107892
57.624444
58.390467
55.355560
55.091652
51.678598
-35.754562
-36.714402
...
-1.596728
-2.386639
0.623530
-1.112894
1.292952
0.005061
5.501922
2.937838
-2.896869
0.916809
152
2002
56.468781
53.596859
59.336683
59.846940
56.716715
56.315459
53.000029
-36.505531
-37.481802
...
-1.139592
-2.253673
0.669264
-1.265762
1.527660
0.459771
5.380845
3.255654
-2.975282
1.517310
153
2003
57.806521
54.995428
60.528331
61.356211
58.141005
57.559311
54.258839
-37.105350
-37.979499
...
-0.954355
-2.620480
0.765391
-1.076781
1.820953
0.549441
5.436436
3.697526
-2.873010
2.294373
154
2004
59.092265
56.324909
61.596290
63.051871
59.472902
58.608703
55.498918
-37.766827
-38.738321
...
-0.950624
-2.659719
0.641039
-1.466182
1.967039
0.765177
5.554431
3.861156
-2.869829
2.524262
155
2005
60.491580
57.692328
62.788338
64.576346
60.854703
60.042009
56.995755
-38.498393
-39.345031
...
-1.199984
-2.114013
0.545057
-1.496730
2.044882
1.133363
5.239558
4.075110
-2.581247
2.357626
156 rows × 44 columns
Name of different forcings.
In [17]:
forcings = ['All forcings', 'Anthropogenic tropospheric aerosol','Greenhouse gases','Land use','Ozone','Solar','Volcanic']
In [18]:
colors = ['C0','C1','C2','C3','C4','C5','C6']
fig, axes = plt.subplots(4,2, figsize=(11.5, 15))
ax=axes.flatten()
for i in np.arange(7):
ax[i].plot(ohc['Year'],ohc[forcings[i]+' Ensemble Mean'],linewidth=3,color=colors[i])
for k in np.arange(1,6):
ax[i].plot(ohc['Year'],ohc[forcings[i]+' R'+str(k)],linewidth=0.5,color=colors[i])
ax[i].set_xlabel('Year')
ax[i].set_ylabel(r'Ocean Heat Content ($10^{22}$J)')
ax[i].set_title(forcings[i])
#summary subplot
lines = []
for i in np.arange(7):
lines+=ax[7].plot(ohc['Year'],ohc[forcings[i]+' Ensemble Mean'],linewidth=3,color=colors[i],label=forcings[i])
for k in np.arange(1,6):
ax[7].plot(ohc['Year'],ohc[forcings[i]+' R'+str(k)],linewidth=0.5,color=colors[i])
ax[7].set_xlabel('Year')
ax[7].set_ylabel(r'Ocean Heat Content ($10^{22}$J)')
ax[7].set_title('summary')
#ax[7].legend(handles=lines,loc="upper left")
fig.suptitle('Response of Ocean Heat Content by different forcings',y=0.93,fontsize=15)
fig.subplots_adjust(hspace=0.35)
Question 5: What is the relative contribution of each forcing to ocean heat content (positive or negative)? What's the magnitude of contributions?
Answer 5:
Now let's read the temperature response to the same forcings. (tas = "temperature of the air at 2m height")
In [19]:
tas = pd.read_csv('tas.Marvel_etal2015.csv')
In [20]:
tas
Out[20]:
Year
All forcings Ensemble Mean
All forcings R1
All forcings R2
All forcings R3
All forcings R4
All forcings R5
All forcings R6
Anthropogenic tropospheric aerosol Ensemble Mean
Anthropogenic tropospheric aerosol R1
...
Solar R2
Solar R3
Solar R4
Solar R5
Volcanic Ensemble Mean
Volcanic R1
Volcanic R2
Volcanic R3
Volcanic R4
Volcanic R5
0
1900
0.111148
0.103798
0.162833
0.108305
0.029161
0.122152
0.140640
-0.026012
-0.020009
...
0.010009
0.009537
-0.231299
0.042706
0.087778
0.106602
0.067836
0.085882
0.061631
0.116937
1
1901
0.148344
0.235785
0.157822
0.134350
0.082105
0.103183
0.176822
-0.047284
-0.099281
...
0.008983
-0.065837
-0.044185
0.087776
0.053624
0.026345
0.167107
0.084815
-0.062184
0.052038
2
1902
0.108618
0.162046
0.049158
0.175059
0.018039
0.012236
0.235172
-0.024657
-0.031059
...
0.034285
0.006739
0.010537
0.019686
0.008973
-0.027760
0.096914
-0.031996
-0.057169
0.064874
3
1903
-0.074575
-0.083274
-0.091113
-0.022231
-0.116071
-0.096675
-0.038083
-0.007300
-0.040071
...
0.003604
-0.041466
-0.076995
0.102488
-0.169750
-0.205922
-0.219373
-0.131790
-0.149822
-0.141842
4
1904
-0.044726
-0.010342
-0.068511
-0.084272
-0.015209
-0.053399
-0.036621
-0.045635
-0.178219
...
-0.024222
-0.067896
0.006976
0.090059
-0.113867
-0.104091
-0.104014
-0.090662
-0.097495
-0.173071
5
1905
0.002761
0.023988
0.045473
-0.054548
0.044736
-0.008447
-0.034637
-0.018807
-0.101818
...
-0.020324
0.050933
-0.086893
0.131271
-0.051841
-0.081308
-0.065054
0.010467
-0.053837
-0.069475
6
1906
0.108427
0.016779
0.087650
0.105899
0.155592
0.144794
0.139849
-0.029115
-0.037684
...
-0.094657
0.053972
-0.135065
0.061406
-0.019895
0.022498
-0.086665
-0.035894
0.057003
-0.056417
7
1907
0.092086
0.097540
0.102027
-0.001093
0.159102
0.094263
0.100676
-0.049533
-0.010749
...
-0.069270
0.022075
-0.108526
0.058792
-0.034866
-0.031473
-0.040485
-0.005242
0.051355
-0.148483
8
1908
0.095825
0.119193
0.175224
-0.010094
0.136591
0.050898
0.103137
-0.054159
-0.108851
...
-0.048225
0.029610
-0.048528
0.080663
-0.030233
-0.121289
-0.049787
0.020087
-0.040745
0.040570
9
1909
0.143157
0.131294
0.166989
0.065337
0.168136
0.057891
0.269295
-0.020442
-0.031306
...
-0.010173
-0.009247
-0.002745
0.035430
0.036775
0.023160
0.013336
0.077153
0.025351
0.044873
10
1910
0.129143
0.186425
0.039764
0.212706
-0.021780
0.081058
0.276686
-0.021226
0.007444
...
-0.014450
0.086565
-0.010640
0.038777
0.018975
0.041391
-0.011398
0.069720
0.018983
-0.023819
11
1911
0.184638
0.212035
0.119327
0.177418
0.212957
0.181765
0.204327
-0.012760
0.011324
...
0.008264
0.036338
0.018629
0.068576
0.052176
0.073211
0.079772
0.030423
0.096952
-0.019479
12
1912
0.107027
0.136343
0.151620
0.033965
0.085256
0.059408
0.175570
-0.005445
-0.015873
...
0.028785
0.067866
-0.111321
0.049201
0.060786
0.124045
0.003779
-0.012857
0.052886
0.136079
13
1913
0.018753
0.106855
0.041792
-0.027696
-0.037871
0.022497
0.006942
-0.016115
-0.010788
...
0.046771
0.026386
-0.110880
-0.018070
-0.031853
0.046469
-0.181821
-0.061096
-0.014384
0.051565
14
1914
0.071447
0.094009
0.172112
0.046067
0.083184
-0.076342
0.109649
-0.003353
0.090022
...
-0.001882
0.034997
-0.225369
0.118273
-0.020901
0.075417
-0.086810
-0.121479
-0.004271
0.032640
15
1915
0.114367
0.114104
0.171823
0.095790
0.102187
0.048200
0.154094
0.002143
0.015692
...
-0.002866
-0.009490
-0.063282
0.081509
0.026392
-0.062341
0.012459
0.068976
0.069610
0.043259
16
1916
0.139729
0.142537
0.168912
0.147676
0.041336
0.162434
0.175480
-0.040867
0.032096
...
0.051997
-0.068554
-0.177578
0.033961
0.061890
0.104096
0.082384
0.109555
0.039257
-0.025843
17
1917
0.189023
0.152669
0.224610
0.119265
0.195990
0.212717
0.228889
-0.008677
0.089532
...
-0.006657
-0.012637
-0.090669
-0.015170
0.007738
0.032277
0.002638
-0.016171
0.014075
0.005873
18
1918
0.170066
0.195614
0.130797
0.120774
0.237390
0.196803
0.139021
-0.046720
0.002297
...
0.045620
-0.062411
0.051950
-0.034791
0.029004
0.061881
0.026025
-0.010554
0.037220
0.030445
19
1919
0.192227
0.251905
0.229196
0.055357
0.293651
0.231464
0.091790
-0.042756
-0.009094
...
0.032367
0.089988
-0.052445
0.000760
0.008917
-0.082612
-0.077475
0.010236
0.036283
0.158154
20
1920
0.184270
0.206208
0.173186
0.159475
0.238459
0.183363
0.144931
0.059258
0.010088
...
-0.050334
0.041023
-0.005725
0.025896
-0.005388
0.004952
-0.159097
0.053747
-0.021612
0.095068
21
1921
0.151623
0.188767
0.136576
0.124181
0.122025
0.156340
0.181846
-0.067728
0.063035
...
-0.039036
0.043506
-0.059754
-0.037753
0.057064
0.029621
0.010498
0.079359
0.052857
0.112984
22
1922
0.185192
0.077954
0.116999
0.134834
0.275045
0.231020
0.275301
-0.021843
-0.012933
...
-0.043902
0.043785
-0.157884
-0.006216
0.067869
0.005201
0.047093
0.059074
0.089622
0.138353
23
1923
0.232155
0.174396
0.171879
0.161316
0.276424
0.280659
0.328258
-0.031370
-0.030975
...
-0.006354
0.057028
-0.015618
0.052361
0.093892
-0.016180
0.133507
0.161285
0.039999
0.150850
24
1924
0.216975
0.182279
0.182401
0.151864
0.246234
0.295260
0.243813
-0.006563
0.016740
...
0.058892
-0.104226
0.076082
-0.001693
0.020813
-0.087396
-0.006621
0.071140
0.103281
0.023661
25
1925
0.207999
0.277603
0.162737
0.172103
0.204797
0.173110
0.257643
-0.028266
-0.000470
...
0.035383
0.014185
-0.081529
0.073176
0.057317
-0.022844
0.067678
0.085541
0.064994
0.091215
26
1926
0.176792
0.178050
0.115211
0.158249
0.236666
0.140190
0.232385
-0.059609
-0.050366
...
0.041650
0.058460
0.002045
0.022543
0.047401
-0.058500
0.089634
0.052960
0.006851
0.146059
27
1927
0.224168
0.222531
0.239020
0.083993
0.268829
0.267342
0.263295
-0.045409
-0.002903
...
0.058531
0.009693
-0.133517
-0.124229
0.036379
0.078017
0.085186
-0.033481
0.012862
0.039312
28
1928
0.223349
0.309901
0.270767
0.156728
0.170082
0.265093
0.167525
-0.064464
-0.057866
...
-0.074305
0.044799
0.019927
0.085629
0.079479
0.039007
0.142078
0.088887
0.040278
0.087147
29
1929
0.197360
0.229194
0.218751
0.131666
0.259768
0.287819
0.056961
-0.028759
-0.007344
...
0.046764
-0.038155
-0.060251
0.030280
0.038779
-0.034482
0.091282
0.021175
-0.008073
0.123993
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
76
1976
0.415123
0.561114
0.479519
0.412359
0.351445
0.391075
0.295226
-0.306100
-0.382347
...
0.021252
0.122014
-0.031527
-0.088628
-0.050156
-0.023158
-0.073258
-0.007324
-0.023809
-0.123231
77
1977
0.472983
0.543754
0.441238
0.448296
0.503295
0.555017
0.346299
-0.265855
-0.335331
...
0.107059
0.113155
0.080113
-0.087557
0.035352
0.038535
0.144053
-0.019052
0.069444
-0.056224
78
1978
0.478980
0.471473
0.505453
0.406887
0.477353
0.570958
0.441755
-0.257360
-0.291669
...
0.047971
0.030230
-0.044271
0.015968
0.014319
0.016285
0.004124
-0.077988
0.072111
0.057061
79
1979
0.512004
0.546255
0.423315
0.523296
0.471465
0.647257
0.460434
-0.345691
-0.318561
...
0.063478
0.086147
-0.078989
0.007086
0.037434
0.114489
-0.117708
-0.025980
0.125005
0.091363
80
1980
0.537843
0.602518
0.614418
0.474510
0.476913
0.662285
0.396416
-0.363457
-0.383026
...
0.068239
0.026982
0.049151
-0.006043
0.033067
0.132479
-0.010309
-0.111086
0.055194
0.099056
81
1981
0.595501
0.613921
0.719454
0.552013
0.517771
0.655595
0.514249
-0.401594
-0.510514
...
0.069265
-0.023581
0.023975
0.065166
0.001412
0.017031
-0.113538
0.006037
0.072913
0.024618
82
1982
0.471870
0.474342
0.490923
0.449374
0.467684
0.480020
0.468877
-0.335799
-0.408906
...
0.070007
-0.011851
-0.005412
0.015434
-0.066209
-0.045929
-0.069743
-0.090080
0.003032
-0.128326
83
1983
0.318538
0.281570
0.353182
0.263055
0.293202
0.438885
0.281334
-0.338329
-0.445611
...
0.042867
0.077809
-0.014022
0.114037
-0.274654
-0.208005
-0.296069
-0.286034
-0.258507
-0.324658
84
1984
0.410942
0.408851
0.356678
0.419643
0.460705
0.506395
0.313382
-0.399697
-0.552602
...
0.054622
0.122135
0.047996
0.101350
-0.205219
-0.229286
-0.294910
-0.248377
-0.050217
-0.203306
85
1985
0.484051
0.461258
0.492314
0.478283
0.492572
0.606323
0.373554
-0.360806
-0.460464
...
0.016468
0.075044
0.095918
-0.015191
-0.099998
-0.066494
-0.096282
-0.168357
-0.042061
-0.126795
86
1986
0.505956
0.462641
0.444134
0.525939
0.555038
0.587096
0.460885
-0.387838
-0.414311
...
0.058357
0.001625
-0.001078
0.026126
-0.038172
-0.003914
-0.041243
-0.087026
-0.013319
-0.045359
87
1987
0.573546
0.505635
0.410780
0.675965
0.744918
0.576842
0.527138
-0.393344
-0.481827
...
0.047462
0.046313
0.070226
0.025448
-0.028612
-0.116283
0.021152
0.011082
-0.073722
0.014709
88
1988
0.597030
0.593092
0.543432
0.587328
0.675244
0.740511
0.442574
-0.405126
-0.476704
...
0.093810
-0.054712
0.107589
0.064768
-0.007917
-0.083068
0.054112
-0.016208
0.053588
-0.048011
89
1989
0.625084
0.592989
0.547351
0.587134
0.677538
0.749424
0.596070
-0.401777
-0.481597
...
0.025299
0.020245
0.042725
0.013040
0.009418
-0.037533
-0.063801
-0.051037
0.116750
0.082710
90
1990
0.680359
0.654356
0.689825
0.710017
0.779691
0.703968
0.544297
-0.361909
-0.503946
...
0.029407
0.047592
-0.030721
0.015769
0.060729
-0.052538
0.168948
-0.111891
0.184244
0.114884
91
1991
0.634999
0.497680
0.634377
0.629078
0.769926
0.753164
0.525770
-0.397324
-0.503717
...
-0.023548
0.023833
-0.111309
-0.026838
-0.037210
-0.110133
0.083609
-0.104779
0.038755
-0.093500
92
1992
0.349664
0.249443
0.321596
0.408767
0.528427
0.319078
0.270674
-0.380013
-0.439319
...
0.113921
0.024156
0.024993
-0.037851
-0.349630
-0.438235
-0.278561
-0.356468
-0.290831
-0.384054
93
1993
0.420967
0.383666
0.474844
0.405094
0.482173
0.572944
0.207079
-0.420935
-0.551130
...
0.060360
-0.028738
-0.042315
0.059879
-0.277545
-0.345528
-0.221014
-0.261012
-0.177757
-0.382413
94
1994
0.515932
0.422266
0.571298
0.511355
0.510200
0.582382
0.498094
-0.436798
-0.598604
...
0.074430
-0.010955
0.011446
0.009410
-0.165309
-0.139522
-0.030760
-0.160774
-0.187333
-0.308157
95
1995
0.643489
0.600785
0.687511
0.674946
0.664989
0.636889
0.595813
-0.395940
-0.401934
...
0.000934
-0.068793
0.079864
0.008645
-0.049528
-0.080968
-0.082578
0.023875
0.011938
-0.119908
96
1996
0.662736
0.581170
0.734708
0.713921
0.621494
0.687592
0.637528
-0.427642
-0.423953
...
0.025317
0.025877
0.111434
0.143972
0.029677
-0.018374
0.069699
0.108041
0.083670
-0.094652
97
1997
0.695971
0.594463
0.790369
0.707251
0.615929
0.715692
0.752121
-0.417494
-0.452678
...
0.087596
0.007067
-0.047175
0.047738
0.051446
0.066404
0.108994
0.031011
0.081738
-0.030919
98
1998
0.789057
0.764938
0.786144
0.837616
0.787816
0.803103
0.754726
-0.427181
-0.512325
...
0.034384
0.023805
0.068252
0.009901
0.086145
0.117291
0.083796
0.096286
0.152547
-0.019195
99
1999
0.826917
0.807288
0.872431
0.799407
0.856815
0.799004
0.826558
-0.403596
-0.399145
...
0.054879
0.080427
0.078425
0.152417
0.081310
0.141172
0.156668
0.089428
0.072943
-0.053661
100
2000
0.867067
0.781659
0.940467
0.824878
0.845077
0.927130
0.883193
-0.418617
-0.429962
...
0.077497
0.017554
0.077140
0.128262
0.055718
0.159101
0.068958
0.073541
-0.026642
0.003631
101
2001
0.879018
0.906133
0.913399
0.864276
0.856020
0.844663
0.889617
-0.473157
-0.479815
...
0.126581
-0.035505
0.018080
0.071667
0.057264
0.021926
0.052448
0.066193
0.108285
0.037470
102
2002
0.893343
0.853782
0.913512
0.854393
0.967677
0.830992
0.939702
-0.419215
-0.436809
...
0.043390
0.050477
0.071645
0.109107
0.062523
0.091913
0.060656
0.063709
0.100803
-0.004467
103
2003
0.906375
0.898436
1.011491
0.865386
0.868816
0.899509
0.894609
-0.408363
-0.437024
...
0.109404
0.001148
0.042307
0.045307
0.073310
0.193690
0.026583
0.098923
0.135287
-0.087934
104
2004
0.940968
0.949198
0.891976
0.931764
0.969831
1.021655
0.881386
-0.421039
-0.506679
...
0.129596
-0.101249
0.075709
0.110206
0.092095
0.113348
0.084934
0.081376
0.129697
0.051119
105
2005
0.921846
0.912318
0.887900
0.995325
0.886189
0.985361
0.863982
-0.441584
-0.478042
...
0.052786
-0.085191
0.056573
0.034504
0.095834
0.115567
0.100917
0.077982
0.030537
0.154165
106 rows × 44 columns
In [21]:
fig, axes = plt.subplots(4,2, figsize=(11.5, 15))
ax=axes.flatten()
for i in np.arange(7):
ax[i].plot(tas['Year'],tas[forcings[i]+' Ensemble Mean'],linewidth=3,color=colors[i])
for k in np.arange(1,6):
ax[i].plot(tas['Year'],tas[forcings[i]+' R'+str(k)],linewidth=0.5,color=colors[i])
ax[i].set_xlabel('Year')
ax[i].set_ylabel('Temperature anomalies (K)')
ax[i].set_title(forcings[i])
#summary subplot
lines = []
for i in np.arange(7):
lines+=ax[7].plot(tas['Year'],tas[forcings[i]+' Ensemble Mean'],linewidth=3,color=colors[i],label=forcings[i])
for k in np.arange(1,6):
ax[7].plot(tas['Year'],tas[forcings[i]+' R'+str(k)],linewidth=0.5,color=colors[i])
ax[7].set_xlabel('Year')
ax[7].set_ylabel('Temperature anomalies (K)')
ax[7].set_title('summary')
#ax[7].legend(handles=lines,loc="upper left")
fig.suptitle('Response of Temperature to different forcings',y=0.93,fontsize=15,weight='bold')
fig.subplots_adjust(hspace=0.35)
Question 6: What is the relative contribution of each forcing to surface temperature (positive or negative)? What is the magnitude of contributions? Do this for:
Answer 6:
Question 7: Compare the summary plot of surface temperature to ocean heat content? Which one has more variability (wiggles)? Based on what you learned from the lectures, why is the ocean heat content a better indicator of climate change compared with surface temperature?
Answer 7:
In [ ]:
Content source: CommonClimate/teaching_notebooks
Similar notebooks: