Polinomio cúbico
\begin{equation*}
f(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3})
\end{equation*}
Primera derivada
\begin{equation*}
f'(x) = \frac{3 x^{2} - 2 x (x_{1} + x_{2} + x_{3}) + x_{1} (x_{2} + x_{3}) + x_{2} x_{3}}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{3 x^{2} - 2 x (x_{0} + x_{2} + x_{3}) + x_{0} (x_{2} + x_{3}) + x_{2} x_{3}}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{3 x^{2} - 2 x (x_{0} + x_{1} + x_{3}) + x_{0} (x_{1} + x_{3}) + x_{1} x_{3}}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{3 x^{2} - 2 x (x_{0} + x_{1} + x_{2}) + x_{0} (x_{1} + x_{2}) + x_{1} x_{2}}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3})
\end{equation*}
Segunda derivada
\begin{equation*}
f''(x) = \frac{2[3 x - (x_{1} + x_{2} + x_{3})]}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{2[3 x - (x_{0} + x_{2} + x_{3})]}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{2[3 x - (x_{0} + x_{1} + x_{3})]}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{2[3 x - (x_{0} + x_{1} + x_{2})]}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3})
\end{equation*}
Tercera derivada
\begin{equation*}
f'''(x) = \frac{6}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{6}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{6}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{6}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3})
\end{equation*}