In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
Download the .txt
data for the "Yearly mean total sunspot number [1700 - now]" from the SILSO website. Upload the file to the same directory as this notebook.
In [2]:
import os
assert os.path.isfile('yearssn.dat')
Use np.loadtxt
to read the data into a NumPy array called data
. Then create two new 1d NumPy arrays named years
and ssc
that have the sequence of year and sunspot counts.
In [3]:
data = np.loadtxt('yearssn.dat')
years = data[:,0]
ssc = data[:,1]
In [4]:
assert len(years)==315
assert years.dtype==np.dtype(float)
assert len(ssc)==315
assert ssc.dtype==np.dtype(float)
Make a line plot showing the sunspot count as a function of year.
In [39]:
f = plt.figure(figsize = (20, 2))
plt.plot(years, ssc, "b-")
plt.box(False)
plt.xticks(np.linspace(1700, 2015, 5, dtype = int))
plt.yticks(np.linspace(0, 150, 3, dtype = int))
plt.xlabel("Year")
plt.ylabel("# of Sunspots")
plt.title("# of Sunspots Per Year")
Out[39]:
In [ ]:
assert True # leave for grading
Describe the choices you have made in building this visualization and how they make it effective.
I removed the box and grid because nobody cares exactly how many sunspots there were, all that matters is the oscilitory behavior. This is plainly shown here. The ticks give a good measure of time, it is easy to estimate the number of years between peaks. As well, the y axis shows the order of magnitude well.
Now make 4 subplots, one for each century in the data set. This approach works well for this dataset as it allows you to maintain mild slopes while limiting the overall width of the visualization. Perform similar customizations as above:
In [40]:
f = plt.figure(figsize = (15,8))
plt.subplot(4,1,1)
plt.plot(years[:100], ssc[:100], "b-")
plt.box(False)
plt.xticks(np.linspace(1700, 1800, 5, dtype = int))
plt.yticks(np.linspace(0, 150, 3, dtype = int))
plt.xlabel("Year")
plt.ylabel("# of Sunspots")
plt.title("# of Sunspots Per Year from 1700-1800")
plt.subplot(4,1,2)
plt.plot(years[100:200], ssc[100:200], "b-")
plt.box(False)
plt.xticks(np.linspace(1800, 1900, 5, dtype = int))
plt.yticks(np.linspace(0, 150, 3, dtype = int))
plt.xlabel("Year")
plt.ylabel("# of Sunspots")
plt.title("# of Sunspots Per Year from 1800-1900")
plt.subplot(4,1,3)
plt.plot(years[200:300], ssc[200:300], "b-")
plt.box(False)
plt.xticks(np.linspace(1900, 2000, 5, dtype = int))
plt.yticks(np.linspace(0, 150, 3, dtype = int))
plt.xlabel("Year")
plt.ylabel("# of Sunspots")
plt.title("# of Sunspots Per Year from 1900-2000")
plt.subplot(4,1,4)
plt.plot(years[300:], ssc[300:], "b-")
plt.box(False)
plt.xticks(np.linspace(2000, 2100, 5, dtype = int))
plt.yticks(np.linspace(0, 150, 3, dtype = int))
plt.xlabel("Year")
plt.ylabel("# of Sunspots")
plt.title("# of Sunspots Per Year from 2000-2015")
plt.tight_layout()
In [ ]:
assert True # leave for grading