# example for the implemented massdistributions of the Milky Way

##### the following example shows the use of density distribution for the Milky-Way and gives some figures of the distribution.

now implemented models are

• Ferrière: contains HI, HII, H2; in two regions (\$R <3kpc\$: arXiv:astro-ph/0702532 ; \$R >3kpc\$: ApJ 497:759)
• Cordes: contains HII (Nature volume 354, pages 121–124)
• Nakanishi: contains HI (arXiv:astro-ph/0304338) and H2 (arXiv:astro-ph/0610769), implemented fit in (arXiv:1607.07886 Appendix C)
``````

In [2]:

from crpropa import *
import numpy as np
import matplotlib.pyplot as plt

``````
``````

In [3]:

# define densities
FER = Ferriere()
NAK = Nakanishi()
COR = Cordes()

``````

### Model Ferrière

contains HI, HII and H2
all types can be deaktivated indiviual FER.setisforHX()
dependency in inner Region: x,y,z
dependency in outer Region R,z

``````

In [4]:

R = np.linspace(0,30*kpc,1000)
phi = np.linspace(0,2*np.pi,360)

n_FER_HI = np.zeros((R.shape[0],phi.shape[0]))
n_FER_HII = np.zeros((R.shape[0],phi.shape[0]))
n_FER_H2 = np.zeros((R.shape[0],phi.shape[0]))
n_FER_tot = np.zeros((R.shape[0],phi.shape[0]))
n_FER_nucl = np.zeros((R.shape[0],phi.shape[0]))

# get densitys
pos = Vector3d(0.)
for ir, r in enumerate(R):
for ip, p in enumerate(phi):
pos.x = r*np.cos(p)
pos.y = r*np.sin(p)
n_FER_HI[ir,ip]=FER.getHIDensity(pos)
n_FER_HII[ir,ip]=FER.getHIIDensity(pos)
n_FER_H2[ir,ip]=FER.getH2Density(pos)
n_FER_tot[ir,ip]=FER.getDensity(pos)
n_FER_nucl[ir,ip]=FER.getNucleonDensity(pos)

plt.figure()

plt.plot(R/kpc, n_FER_HI.mean(axis=1)*ccm, linestyle = '--',alpha = .7, color='red', label= 'atomic hydrogyn (HI)')
plt.plot(R/kpc, n_FER_HII.mean(axis=1)*ccm, linestyle = ':',alpha = .7, color='blue', label = 'ionised hydrogyn (HII)')
plt.plot(R/kpc, n_FER_H2.mean(axis=1)*ccm, linestyle = '-.',alpha = .7, color='orange', label= 'molecular hydrogen (H2)')
plt.plot(R/kpc, n_FER_tot.mean(axis=1)*ccm, color = 'black',alpha = .7, label = 'total density (HI + HII + H2)')
plt.plot(R/kpc, n_FER_nucl.mean(axis=1)*ccm, color ='green',alpha = .7, label = 'nucleon density (HI + HII + 2*H2)')

plt.ylabel('density in 1/cm^-3')
plt.yscale('log')
plt.axis([0,30,10**-3,10**2])
plt.legend()
plt.show()

``````
``````

``````

### Model Cordes

contains HII component (can not be deaktivated)
HIIDensity, Density and NucleonDensity are the same
dependency: R,z

``````

In [5]:

n_COR_R= np.zeros(R.shape)

pos = Vector3d(0.)
for ir, r in enumerate(R):
pos.x = r
n_COR_R[ir]= COR.getDensity(pos)

plt.figure()
plt.plot(R/kpc, n_COR_R*ccm, label = 'HII Cordes')

plt.ylabel('density in 1/cm^-3')
plt.yscale('log')
plt.axis([0,30,10**-3,10**2])
plt.legend()
plt.show()

``````
``````

``````

### Model Nakanishi

contains HI and H2
both parts can be deactivated setisforHX
dependency: R,z

``````

In [6]:

n_NAK_HI = np.zeros(R.shape)
n_NAK_H2 = np.zeros(R.shape)
n_NAK_tot = np.zeros(R.shape)
n_NAK_nucl= np.zeros(R.shape)

pos = Vector3d(0.)

for ir, r in enumerate(R):
pos.x=r
n_NAK_HI[ir]=NAK.getHIDensity(pos)
n_NAK_H2[ir]=NAK.getH2Density(pos)
n_NAK_tot[ir]=NAK.getDensity(pos)
n_NAK_nucl[ir]=NAK.getNucleonDensity(pos)

plt.figure()

plt.plot(R/kpc, n_NAK_HI*ccm, linestyle = '--',alpha = .7, color='red', label= 'atomic hydrogyn (HI)')
plt.plot(R/kpc, n_NAK_H2*ccm, linestyle = '-.',alpha = .7, color='orange', label= 'molecular hydrogen (H2)')
plt.plot(R/kpc, n_NAK_tot*ccm, color = 'black',alpha = .7, label = 'total density (HI  + H2)')
plt.plot(R/kpc, n_NAK_nucl*ccm, color ='green',alpha = .7, label = 'nucleon density (HI + 2*H2)')

plt.ylabel('density in 1/cm^-3')
plt.yscale('log')
plt.axis([0,22,10**-3,10**2])
plt.legend()
plt.show()

``````
``````

``````

for egsample to combine the HI Component from Ferriere, the HII Component from Cordes and the H2 from Nakanishi

``````

In [18]:

DL = DensityList()

FER.setIsForHII(False)
FER.setIsForH2(False)

DL.addDensity(COR) # only the activ HII is added, contains no other typ

NAK.setIsForHI(False)

# plot types and sum of densities (along x-axis)

n_DL_nucl = np.zeros(R.shape)
n_DL_tot = np.zeros(R.shape)

pos = Vector3d(0.)
for ir, r in enumerate(R):
pos.x = r
n_DL_tot[ir] = DL.getDensity(pos)
n_DL_nucl[ir] = DL.getDensity(pos)

plt.figure()
plt.plot(R/kpc, n_FER_HI[:,0]*ccm, label= 'HI Ferriere', linestyle =':',alpha = .7)
plt.plot(R/kpc, n_COR_R*ccm, label = 'HII Cordes', linestyle ='-.',alpha = .7)
plt.plot(R/kpc, n_NAK_H2*ccm, label='H2 Nakanishi', linestyle = '--', alpha = .7)
plt.plot(R/kpc, n_DL_tot*ccm, label= 'total', linestyle='-',alpha = .7)
plt.plot(R/kpc, n_DL_nucl*ccm, label ='nucleon', linestyle = (0, (3, 5, 1, 5, 1, 5)), alpha = .7)

plt.yscale('log')
plt.xlabel('x in kpc')
plt.ylabel('density in 1/cm^3')
plt.axis([0,30,10**-3,100])
plt.legend()
plt.show()

``````
``````

``````
``````

In [ ]:

``````
``````

In [ ]:

``````
``````

In [ ]:

``````
``````

In [ ]:

``````
``````

In [ ]:

``````